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PACS. 82.70.Dd — Colloids.
PACS. 67.40.Hf — Hydrodynamics in specific geometries, flow in narrow channels.
PACS. 83.80.Hj — Suspensions, dispersions, pastes, slurries, colloids.

Abstract. — We experimentally and theoretically investigate the collective behavior of three
colloidal particles that are driven by a constant force along a toroidal trap. Due to hydrody-
namic interactions, a characteristic limit cycle is observed. When we additionally apply a peri-
odic sawtooth potential, we find a novel caterpillar-like motional sequence that is dominated by
hydrodynamic interactions and promotes the surmounting of potential barriers by the particles.

Hydrodynamic interactions (HI) play an important role whenever two or more particles
move in a viscous fluid [1,2]. Due to their long-range nature, they govern the dynamics
of colloidal suspensions, e.g., during self- and collective diffusion [3], sedimentation [4], and
aggregation processes [5]. Furthermore, HI can lead to pattern formation of rotating motors [6]
with a possible two-dimensional melting transition [7] and they are indispensable for the
locomotion of microorganisms [8,9] or in the transport of fluid by beating cilia [10]. While in
all these examples many colloids are involved, the effect of HI in few-particle systems has been
investigated only recently. It has been demonstrated that HI mediate the correlated motion
of a pair of colloids trapped in optical tweezers [11] and that they give rise to interesting
collective behavior, e.g., periodic or almost periodic motions in time [12] or even transient
chaotic dynamics in sedimenting three-particle clusters [13].

In this letter, we experimentally and theoretically demonstrate how HI lead to a novel mo-
tional behavior of a colloidal system comprised of at most three particles. In contrast to the
aforementioned examples, where the colloids exhibit either deterministic drift or Brownian
diffusion, in the following we concentrate on a non-equilibrium system where both determin-
istic and stochastic motions are of importance. This work is partially motivated by a recent
theoretical analysis of particles driven by a constant tangential force along a toroidal trap [14].
Owing to HI, the particles first go through a transient regime and then enter a characteristic
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limit cycle. Here, we present the first experimental confirmation of these findings. Our main
objective, however, is to investigate experimentally and theoretically how the collective motion
of interacting particles changes when a sawtooth potential is added to the constant driving
force. Sawtooth potentials are an important component for thermal ratchets studied, e.g., in
connection with biological motors [15]. Here, we demonstrate that, due to HI, two-particle
clusters exhibit an unexpected caterpillar-like motion which facilitates the surmounting of po-
tential barriers. This motional sequence is largely dominated by hydrodynamic interactions
in the system.

Tangential driving forces were exerted on colloidal particles with a single three-dimensional
laser tweezer that scans a circle inside our sample cell with the help of computer-controlled
mirrors at a frequency fr. In contrast to high scanning speeds (fr > 200 Hz), where the parti-
cle motion is entirely diffusive [16], it has been experimentally and theoretically demonstrated
that, at intermediate scanning speeds where the particle cannot directly follow the trap, a
small periodic force is transferred from the passing optical trap onto the particle [17]. As a
result, the particle moves with a mean velocity vg o< f L. For the experimental parameters in
our setup (A = 532nm, P ~ 200mW, fr = 76Hz), this yields vg =~ 7 pum/s for a single silica
sphere with radius ¢ = 1.5 pm immersed in ethanol solution. Since the particle displacement
by a single kick from the optical trap is estimated to be only about 0.08a, the particle motion
is rather smooth. In addition, the focus size slightly changes along the circle which in total
leads to a variation of vy smaller than 20%. This means that we can also view vg as the result
of a constant driving force kg = 6mnavg. To avoid wall effects which further complicate the
theoretical treatment of HI, the focus of the laser beam was about 40 ym above the bottom
plate of our sample cell. The particles were illuminated with a white light source and imaged
to a CCD camera, which was connected to a PC where images were compressed and stored.
Particle trajectories were obtained offline by a particle tracking algorithm [18]. To enhance
the electrostatic coupling between the charged spheres, no salt was added to the suspension.

A sequence of typical snapshots (At = 4.8s) of three particles in the periodic limit cycle
driven counter-clockwise on a circular ring with 9.86 pm radius is shown in fig. 1. The two-
particle cluster at the top (fig. 1(a)) catches up with a preceding third particle (fig. 1(b))
until they form a triplet for a short time. Since the middle particle in this triplet is most
efficiently screened from the fluid flow, it pushes the frontmost particle ahead so that the two
front particles leave the last one behind (fig. 1(c)). Due to drag reduction by drafting, this
cluster is then again catching up with the single particle (fig. 1(d)). We also investigated
the transition from the unstable particle configuration, where the particles had originally the
same distance, into the periodic limit cycle and found very good agreement with theoretical
predictions (data not shown) [14]. It should be also mentioned that the limit cycle described

Fig. 1 — Snapshots of a video sequence [19] describing the characteristic limit cycle of three colloidal
particles (bright) driven along a toroidal trap in counter-clockwise direction. The time difference
between the pictures is 4.8 s each. The optical trap is blocked with optical filters.
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above is entirely absent when repeating the experiment close to a surface. We believe that
this is a result of the rigid boundary that alters HI close to surfaces [20].

After having demonstrated hydrodynamic effects in the presence of a constant driving force,
we now want to study the cooperative particle motion in the presence of a more complicated
force profile. In addition to the constant driving force kg > 0, we apply a sawtooth potential
Vis(x) with period L, where z is the arc-length coordinate along the circumference of the trap.
In the first segment of length Ly, Vi(z) exerts an additional force ks; > 0 on the particle, thus
enhancing the drift motion, whereas in the second segment of length Lo, = L — L1, the force
—ks2 < 0 counteracts kg. As a result, the particle is moving in a tilted sawtooth potential
V(z), as illustrated in the inset of fig. 2(a). The single-particle motion is described by the one-
dimensional Smoluchowski equation from which the probability distribution p(z,t) for finding
the particle at position z in the tilted sawtooth potential is calculated. Since the particle
moves in a circle, p(x,t) is stationary. After solving the Smoluchowski equation on the two
segments using appropriate matching conditions at * = 0,L and * = L;, we calculate the
constant probability current j and finally arrive at the mean particle velocity (v) = jL [21]:
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Here, vg = ko/(67na) is the particle velocity without sawtooth potential, and § = Lo/L
describes the asymmetry of the potential. C' = koL/(kgT) is the energy dissipated on the
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Fig. 2 — (a) Normalized single-particle velocities as obtained from the experiment () and from the
analytical expression (1) (---). The inset shows a schematic representation of the tilted sawtooth
potential. The parameter ¢ = ks2/ko essentially measures the amplitude of the sawtooth potential,
where ko is the constant driving force; for ¢ > 1, the particle has to overcome an energy barrier on
segment Lo. (b) Corresponding two-particle-cluster velocities from experiments ([J) and numerical
simulations including HI ( A) and without HI (e ). For comparison, the dashed curve of (a) is replotted.
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Fig. 3 — Experimentally determined dissipated energy Waiss(z) of a single particle in a sawtooth po-
tential driven by a constant force ko. The values were calculated from the position-dependent velocity
v(z) shown in the upper inset. Subtraction of the contribution koz of the constant driving force yields
the sawtooth potential Vi(z) as illustrated in the lower inset (symbols 0); the dashed curve is the
sawtooth potential as calculated from the intensity variation along the contour of the toroidal trap.

length L relative to the thermal energy kpT'. It is linked to the conventional Peclet number
Pe = Ca/L. Since C > 1 in our case, one might naively expect a purely deterministic motion.
In general, however, the type of motion depends on the value ¢ = kqo/ko which serves as a
measure for the amplitude of the sawtooth potential. For ¢ < 1, the motion is indeed purely
deterministic and determined by the terms in eq. (1) that do not contain C. At ¢ = 1, the net
force acting on the particle in segment, Lo vanishes (ko—ks2 = 0), and the colloid moves entirely
stochastically until it resumes the drift motion in segment L;. At g > 1, it even experiences
a potential barrier that gives rise to a stick-slip motion. Figure 2(a) (dashed line) shows the
result of eq. (1) as a function of ¢ for the set of experimental parameters specified below. Note
that, in the limit C' — oo, the Boltzmann tail at ¢ > 1 vanishes and (v) becomes zero at ¢ = 1.

To realize the situation described above experimentally, we weakly modulated (< +12%)
the intensity of the scanning optical tweezer. This was achieved with an electro-optical-
modulator controlled by a function generator that was synchronized with the scanning motion
of the laser focus. Before discussing hydrodynamic coupling of particles in such a situation,
let us briefly demonstrate that our experimental approach allows to simultaneously apply a
constant drift force and a quasi-static periodic potential to the colloids. The upper inset of
fig. 3 shows the position-dependent velocity v(z) of a single particle (averaged over 200 ms
each) determined from its trajectory. From this, we calculate the position-dependent force
k(z) = 6mnav(z) and obtain the energy dissipated by the particle, Waiss(z) = — [5 k(a')da’
(fig. 3), which is essentially identical to the tilted sawtooth potential V(x) [22]. After subtrac-
tion of the linear contribution kgx corresponding to the mean particle velocity vy measured
without intensity modulation, we finally obtain the spatially periodic potential acting on the
particles. The open symbols of the lower inset in fig. 3 show the corresponding sawtooth
potential. On the other hand, taking into account the size of the laser focus and that of the
particles (both effects lead to some rounding of the edges in the potential), we can calculate
from the sawtooth-shaped modulation of the laser intensity the effective potential acting on
the particles [21]. It is shown as dashed line and demonstrates the good agreement with our
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Fig. 4 — Sketch of the motional sequence of a cluster comprised of two particles. Due to HI and
electrostatic interactions, a caterpillar-like motion is observed which facilitates the surmounting of
potential barriers.

measurements. The amplitude of the potential corresponds to an intensity modulation ampli-
tude of AP ~ 20mW that is consistent with the measured intensity variation. To allow for a
direct comparison between experiments and theory, we treat the potential in the following as
an effective sawtooth potential.

First, we experimentally determined the normalized mean particle velocity (v)/vg of a sin-
gle particle (see eq. (1)) as a function of the amplitude of the sawtooth potential, the latter be-
ing proportional to ¢ (with the proportionality constant as fitting parameter). The results are
plotted in fig. 2(a) as open symbols and were obtained for the following experimental parame-
ters: vg = 7.24 um/s and 6§ = Lo/L =~ 2.7 ym/10.3 um which yields ko = 245-107% N and C ~
610. The dashed curve in fig. 2(a) is the result of a least-mean-square fit to eq. (1) that shows
excellent agreement with the data when Lo as a free fitting parameter assumes the value Ly =
1 pm and thus 6 = 0.1. We attribute the deviation from the experimental Lo to the difference
between the experimentally realized and the perfect sawtooth potential as mentioned above.

Next, we investigated the case where three particles were driven along the sawtooth poten-
tial. Similar to the case Vi(z) = 0, the particles change their relative distances as a function of
time (for video sequences see [19]). In contrast to fig. 1, however, we do not observe the same
periodic limit cycle but a novel type of collective motion induced by the sawtooth landscape.
Figure 2(b) shows the average velocity of two-particle clusters in a tilted sawtooth potential as
determined from experiments (open symbols) and from Brownian-dynamics simulations (solid
triangles) with the above parameters. In our image analysis, we defined a cluster as a pair
of particles with center-to-center distance < 5a, corresponding to arc-length distance < 0.7L.
Obviously, the two-particle velocity is larger than the corresponding one-particle velocity
which is again a result of the reduced hydrodynamic friction. What is actually surprising, is
the fact that even when the single-particle velocity drops to zero around ¢ > 1 (because the
particle becomes trapped in a potential well), the cluster velocity varies only by about 20% in
that g-range. This clearly demonstrates that the surmounting of potential barriers is largely
facilitated for particle clusters compared to a single colloid. The reason for this behavior is due
to HI that lead to an interesting, caterpillar-like motion of the clusters as described in the fol-
lowing. Assume particle “2” (fig. 4(a)) drifts into a potential well which is already occupied by
particle “1”. Due to a combined effect of electrostatic repulsion and HI, particle “2” will push
particle “1” over the barrier (fig. 4(b)). This in turn causes a hydrodynamic drag that particle
“1” exerts onto particle “2” (fig. 4(c)) which pulls particle “2” across the barrier (fig. 4(d)).
The motional sequence just described is reminiscent of that of a caterpillar which first stretches
out, adheres at the front, and then pulls the tail towards the head. Once such a mode is initi-
ated (e.g., by a thermally induced process), the outlined motion may last over several periods
L until the particles become trapped in separate potential minima due to thermal fluctuations
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of their distance. Then, the motion stops until the situation described in fig. 4(a) is initiated
by a spontaneous hop of particle “2” into the potential well occupied by particle “1”.

Note that the dynamic mode described above is essentially a two-particle effect. However,
we also observe “caterpillars” that consist of three particles and persist over several periods
before breaking apart. Thus, the same enhanced dynamics is expected in case the trap is filled
with more than three particles.

This motional pattern of two-particle clusters was also observed in our Brownian-dynamics
simulations. The electrostatic inter-particle repulsion is described by a screened Coulomb
potential [23] Viep(r) = [Ze"/(1 4 ka))*AgkpTe ""/r with Debye length ! ~ 300nm,
where the effective particle charge is adjusted to Z ~ 5000 (taking Ag ~ 2.3nm for the
Bjerrum length in ethanol) so that the center-to-center distance between the particles does
not go below about 3a as observed in the experiment. The Brownian-dynamics simulations
including HI were carried out using a predictor-corrector-type integration scheme which is first
order in the time step At [21,24]. For particle separations r > 3a, the mobilities describing the
HI and thus the mutual coupling of all particles can be well approximated by the Rotne-Prager
tensor [2], which is the far-field expansion up to order 1/r* (for details, see ref. [21]).

To demonstrate the crucial role of HI for the enhanced cluster motion, we performed numer-
ical simulations without HI. The mean particle velocity, defined as the average over all particles
and times, coincides with the single-particle curve in fig. 2 when plotted as a function of ¢. This
is clear since, due to the average over all particles, the electrostatic forces cancel each other
(actio = reactio) and thus, on average, the particles move independently. The mean velocities
of the particle clusters, however, deviate from the single-particle velocities, as illustrated in
fig. 2(b) (solid circles). Nevertheless, as expected, the average cluster velocities are always be-
low the corresponding curve where HI are included. For ¢ > 1, the two-particle-cluster motion
without HI consists of singular events where particle “2” moves down the seceding flank of the
tilted sawtooth potential and pushes particle “1” over the potential barrier (fig. 4(a, b)). In
contrast to the caterpillar-like behavior, the collective motion stops here since the drag due to
HI is missing. Then, another thermal activation is necessary to induce the sequence again [19].

Finally, we point out that the short-range electrostatic repulsion between the particles is
only of minor importance for the collective, caterpillar-like motion as described above. It is
rather the long-ranged HI that dominate the force which pushes the front particle in fig. 4(b)
over the barrier (note that HI decay asymptotically as 1/r whereas the dominant term in the
repulsive electrostatic force is exponentially damped, Fiep(r) = =V, Viep(r) x e " /r with
k™! < a). The caterpillar-like motion was also obtained in simulations where the strength
of the electrostatic interaction potential was reduced by a factor of 50 so that the minimum
distance to contact of the particles was 0.1a [25]. Note that the same effect would also be
present in the case where electrostatic repulsion is completely absent since HI themselves lead
to repulsive lubrication forces that increase with decreasing particle distance.

The present study demonstrates that HI strongly dominate the motional behavior of driven
colloidal particles. In the presence of a constant driving force, we experimentally confirmed
the recently predicted characteristic limit cycle. If in addition a static periodic potential is
applied along the toroidal trap, we find that colloidal clusters perform a caterpillar-like motion
which facilitates the surmounting of large potential barriers. This novel type of motion which
is predominantly triggered by HI is also confirmed by numerical simulations. Our results
demonstrate that the motion of particles in thermal ratchets is largely changed due to HI.
Such thermal ratchets may be utilized for particle sorting purposes but are also considered for
biological motors. Indeed, recent in vivo experiments demonstrate that the speed of coupled
motor proteins is increased compared to the speed of a single motor [26].



C. LUTZ et al.: SURMOUNTING BARRIERS USING HYDRODYNAMIC INTERACTIONS 725

X K ok

We would like to thank V. BLICKLE for helpful discussions. This work was supported by

the Deutsche Forschungsgemeinschaft through SFB Transregio 6 and Grant No. Sta 352/5-1.

REFERENCES

[1] HappEL J. and BRENNER H., Low Reynolds Number Hydrodynamics (Noordhoff, Leyden) 1973.

[2] Dnont J. K. G., An Introduction to Dynamics of Colloids (Elsevier, Amsterdam) 1996.

[3] Pusey P. N., in Liquids, Freezing, and Glass Transition, Proceedings of the Les Houches Sum-
mer School of Theoretical Physics 1989, Part II, edited by HANSEN J. P., LEVESQUE D. and
ZINN-JUSTIN J. (North-Holland, Amsterdam) 1991, pp. 763-942; NAGELE G., Phys. Rep., 272
(1996) 215.

[4] SEGrRE P. N., HERBOLZHEIMER E. and CHAIKIN P. M., Phys. Rev. Lett., 79 (1997) 2574;
BRENNER M. P., Phys. Fluids, 11 (1999) 754; LApD A. J. C., Phys. Rev. Lett., 88 (2002)
048301; TEE S.-Y., MucHA P. J., CIPELLETTI L., MANLEY S., BRENNER M. P., SEGRE P. N.
and WEITZ D. A., Phys. Rev. Lett., 89 (2002) 054501; PADDING J. T. and Louis A. A., Phys.
Rev. Lett., 93 (2004) 220601.

[5] TANAKA H. and ARAKI T., Phys. Rev. Lett., 85 (2000) 1338.

[6] GrzyBOwWsKI B. A., STONE H. A. and WHITESIDES G. M., Nature, 405 (2000) 1033.

[7] LENz P., JoANNY J.-F., JULICHER F. and PROST J., Phys. Rev. Lett., 91 (2003) 108104.

[8] PuRCELL E. M., Am. J. Phys., 45 (1977) 3.

[9] Berc H. C., Nature, 245 (1973) 380; Kim M. J., BIrD J. C., VAN PARYs A. J., BREUER
K. S. and Powers T. R., Proc. Natl. Acad. Sci. U.S.A., 100 (2003) 15481; REICHERT M. and
STARK H., Eur. Phys. J. E, 17 (2005) 493.

[10] GUERON S. and LEVIT-GUREVICH K., Proc. Natl. Acad. Sci. U.S.A., 96 (1999) 12240.

[11] MEINERS J.-C. and QUAKE S. R., Phys. Rev. Lett., 82 (1999) 2211; HENDERSON S., MITCHELL
S. and BARTLETT P., Phys. Rev. E, 64 (2001) 061403; REICHERT M. and STARK H., Phys. Rev.
E, 69 (2004) 031407.

[12] CaruiscH R. E., Lim C., LUKE J. H. C. and SANGANI A. S., Phys. Fluids, 31 (1988) 3175;
Snook I. K., Bricas K. M. and SMITH E. R., Physica A, 240 (1997) 547.

[13] JAnost I. M., TEL T., WoLF D. E. and Garras J. A. C., Phys. Rev. E, 56 (1997) 2858.

[14] REICHERT M. and STARK H., J. Phys.: Condens. Matter, 16 (2004) S4085.

[15] JULICHER F., AJDARI A. and PROST J., Rev. Mod. Phys., 69 (1997) 1269.

[16] Lutz C., KOLLMANN M. and BECHINGER C., Phys. Rev. Lett., 93 (2004) 026001.

[17] FaucHEUX L. P., STOLOVITZKY G. and LIBCHABER A., Phys. Rev. E, 51 (1995) 5239.

[18] BAUMGARTL J. and BECHINGER C., Europhys. Lett., 71 (2005) 487.

[19] For videos, see http://www.pi2.uni-stuttgart.de/Bechinger/research/more/caterpillar.

[20] DiamanT H., Cui B., LIN B. and RICE S. A., J. Phys.: Condens. Matter, 17 (2005) S2787.

[21] REICHERT M., Lutz C., BECHINGER C. and STARK H., in preparation.

[22] Waiss also contains small contributions from the stochastic motion of the particles that can be
neglected relative to its absolute value.

[23] DERJAGUIN B. V. and LANDAU L., Acta Physicochim. (USSR), 14 (1941) 633; VERWEY E. J.
and OVERBEEK J. T. G., Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam)
1948.

[24] HOTTER M. and OTTINGER H. C., J. Chem. Soc., Faraday Trans., 94 (1998) 1403.

[25] For small particle distances, we used the numerical library HYDROLIB (HINSEN K., Comput.
Phys. Commaun., 88 (1995) 327) to calculate the mobilities including lubrication corrections.

[26] KuraL C., Kim H., SYED S., GosHIMA G., GELFAND V. I. and SELVIN P. R., Science, 308

(2005) 1469.



