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1 Introduction

The result of a measurement « e.g. of the length of Dutch men or the weight
of rice grains is usually Gaussian distributed with a well-defined average z
and width o. Quite to the contrary, around 1944 Gutenberg and Richter[1]
discovered that the size of earthquakes follow a power law distribution: an
earthquake of energy E has a probability to occur given by

P(E)~E~" (1)

where 7 is close to 1. Such power law behavior is quite special since an
average and width cannot be defined. A particularly nasty property is that
the probability decays only as a power law, while in the Gaussian case it
decays faster than exponentially. As a result there is a non-negligible chance
for a huge earthquake.

Many systems in nature display dynamics dominated by similar punctu-
ated behavior, which we call here generically ’avalanches’. Other examples
are: snow-avalanches[2], forest fires, rain fall[3], stock-market indices[4] and
the extinction of species in biology[5]. In all these cases, due to a power law
distribution function, there is a finite chance for very big, catastrophic events.

In 1988, Bak, Tang and Wiesenfeld[6] introduced the Self-Organized Crit-
icality (SOC) model; it was made accessible for a broad audience by the book
”How Nature Works”[7]. In fact, apart from the power law behavior, there are
now many more criteria[8] for SOC behavior, which enable a more stringent
test.

Although there has been a very significant amount of numerical simu-
lations on SOC systems, there are only very few controlled experimental
investigations. Up to now experimental work was much hampered by the dif-
ficulty to determine whether a particular system is SOC or not. In fact, for
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sand piles both SOC and non-SOC behavior has been reported[9] (based on
power law scaling of avalanches only).

We study experimentally a 3-dimensional pile of rice with a 1 x 1 m? floor
area. Using the more stringent criteria, we discovered[10] that rice behaves as
SOC: not only is the avalanche distribution a power law, but also finite size
scaling (FSS) is obeyed: the maximum avalanche size scales in a particular
manner with the size of the system, as predicted by SOC-theory. We deter-
mine the exponent (power) of the power law distribution function as well as
the fractal dimensions of the avalanche cluster (avalanche exponents). On the
other hand, we also determine the growth and roughness exponents (surface
exponents) for the rough surface that remains after many avalanches. SOC
theory does not fix the exact values of the individual exponents, but does
predict scaling relations e.g. between the avalanche and surface exponents.
We find that as far as we tested these relations, they are obeyed for our
experimental data.

In addition, SOC theory predicts that a system which is not yet ’critical’
moves in a particular manner toward the SOC state described by the so-called
gap-equation. This approach is characterized by another exponent, the value
of which, interestingly, is given through another scaling relation containing
only values for the SOC state[11]. Also this relation is obeyed for our pile.

After introducing our experimental set-up, we review these ideas and cor-
responding experimental work in more detail below. We conclude by some
(experimentally tested) ideas on how to prevent big catastrophes.

2 Experiment: a big rice pile

For the experiments we use long grained rice with dimensions of typically
2 x 2 x 7 mm?3, similar to rice A of Ref[12]. Our experimental setup is shown
in Figure 1. It consists of a rice pile of 1 x 1 m? floor area on the top of
which rice rains down from a linear source. Uniformity within 5 % in the
distribution along this line is guaranteed by the use of a distributor board,
see Figure 2.

By the distributor board the stream of rice is continuously split such that
at the bottom we end up with a row of 64 uniformly distributed sub-streams.
A plastic flap at the bottom is used for further spreading and to slow down
the rice before it impinges onto the surface of the pile.

To rain down at a uniform rate, the rice is fed to the distribution board
from a mechanically stirred funnel, from which the rice emerges at an ap-
proximately constant rate of typically 1500 grains per image (taken at 30 s
interval), distributed over the whole width of the distributor board.

To monitor the shape of the pile as function of time, a set of colored
(red, green and blue) lines (see Figure 3) is projected onto the pile using an
overhead projector. Photographs are taken from a different viewpoint with



Non-linear dynamics and fractal avalanches in a pile of rice 3

Overhead pigjeston

‘ Rice dispenser
Distribu’(cio_[_’n__b_qa (

]

Fig. 1. The rice set-up with 1x 1 m? floor area. Rice rains down from the distributor
board onto the top of the pile. The 3-dimensional shape of the pile is reconstructed
from the shape and position of a set of colored lines projected onto the pile.

N

Fig. 2. The binary distributor board used to create a uniform line source.

respect to the projector, such that the shape of the pile can be reconstructed
using the geometry of stereoscopy.

Typically an experimental run lasts 4 h, with a picture being taken every
30 s. The pictures are taken with a digital camera with a resolution of 2048 x
1536 pixels. For each picture the centre of gravity of each line is detected (see
Figure 3, lower panel), from which the 3-dimensional surface is reconstructed.
From the 3-dimensional surfaces, the roughening properties (see section 3
below) and the avalanche properties (see section 4 below) are calculated.

3 The rough surface of the pile

The surface of the rice pile is not completely smooth, but shows surface fluc-
tuations, which are mainly due to the occurrence of avalanches that remove
material from a more elevated part of the pile and deposit it at a lower
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Fig. 3. (top panel) Detail of the set of colored lines projected onto the pile. (bottom
panel) The centre of gravity of the lines as recognized by the software.

position. Since the avalanches have all kinds of sizes, they lead to surface
fluctuations of all kinds of size.

A common way to analyze such ’rough’ surfaces is to consider the spatial
and temporal dependences of the root-mean-square (RMS) ’width’ of the
surface. For this we first fit a plane h (x,y,t) to the surface h (z,y,t) of the
pile. The RMS deviations w (L, t) of the surface with respect to this plane
are then easily calculated from

w(L,t) = (% Z [h (x,y,t)—h(x,y,t)]Z) (2)

r,y=1

It is well known[13], that initially this width grows as a power law of time
w(L,t) ~ t? where 3 is called the growth exponent, while at later times,
when lateral correlations span the whole size of the system I, this width
grows as a power law of system size w(L,t) ~ L% where « is called the
roughness exponent. Hence the exponents « and 3 can be obtained from the
slope in a log-log plot of w vs. L and t respectively, see Figure 4. In fact, a
more accurate way to determine these exponents was used for this Figure. It
is based on the correlation function

[SIC

C (L) = (B +&y+mt+7)—hEny,) 3)
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Fig. 4. (a) Determination of the roughness exponent from the spatiotemporal cor-
relation function C' (L, 0) and the distribution function o (k) as defined in the text.
The line indicates the average slope, which defines the value for the roughness expo-
nent obtained. (b) Determination of the growth exponent from the spatiotemporal
correlation function C'(0,¢) and the distribution function o (w) as defined in the
text. The line indicates the average slope, which defines the value for the growth
exponent, obtained

where the (-)_ indicates averaging over all 7 > 0, and where (-}, indicates
averaging over all points (£,7) and all (z,y) at a radius L from the origin.
The behavior of this correlation function is similar to that of the width i.e.
C(0,t) ~ t% and C (L,0) ~ L. Alternatively[14], one may also start with
the radially averaged power spectrum S (k) of the surface defined by

S (k) =

N 2
h (ks ky)‘

(4)
where h denotes the 2-dimensional Fourier transform of the surface and k2 =

k2 + k; The corresponding spatial distribution function o (k) behaves in the
same manner[14] as the correlation function C' (z,t) where

o? (k) = /0 S (k) kd& (5)

Similar relations are defined for the temporal distribution function o (w).
In Figure 4 we show this scaling behavior.

The resulting exponents are oo = 0.42(3) for the roughness exponent and
5 = 0.28(3) for the growth exponent. Before discussing these values, we will
now turn our attention to the avalanche behavior.
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Fig. 5. Typical avalanche on the rice pile. The picture shows the avalanche as the
difference in height between two successive images.

4 Avalanches on the rice pile

A typical avalanche is shown in Figure 5. The size and shape of the avalanches
can be determined from the height difference of the surface between two
consecutive images. In this manner we determine the size of the avalanches
(as a volume, which can be expressed in the number of rice grains parti-
cipating) and also the shape of the avalanches. In particular, we determine
the fractal dimension D of the avalanche cluster and also the fractal dimension
dp of the area on which the avalanche happened: this area is a projection of
the avalanche shape on the surface of the pile. Both fractal dimensions are
determined using box counting[15].

A plot of avalanche size as a function of time, presented in Figure 6,
clearly shows the punctuated behavior.

The avalanches were determined in the central part of the pile with a size
of 600 x 600 mm?. In Figure 7a we plot the size distribution for the avalanches
in this area, but also for subsets of this area.

We observe power law behavior with a size distribution exponent 7 =
1.21(2) (corresponding to the straight line), but clear deviations from this
behavior occur above a certain size, which is related to the size of the area
of observation. Interestingly, SOC-theory makes a precise prediction for this
deviation: it occurs because the avalanche ’feels’ the size of the system L, i.e.
because the linear size of the avalanche becomes comparable to L. Clearly
this happens for s &~ L” and hence the deviation should scale with s/L".
This is verified in Figure 7b , where, in addition, the vertical axis was mul-
tiplied by s” to take out the power law. Clearly a very nice data-collapse is
observed confirming the "finite size scaling”-prediction of SOC theory. This
data collapse yields an accurate value for the exponents: D = 1.99 (2) and

T =1.21(2).
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Fig. 6. Size of the avalanches as a function of time in the steady state, i.e. after
the system has been left running for a long time. Results for three experiments are
shown. Note the punctuated behavior.
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Fig. 7. (a) Size distribution of the avalanches. P (s, L) is the number of avalanches
of size s that were observed while monitoring a window of size L x L (b) Finite size
scaling of the size distribution of the avalanches. Note the nice data-collapse: the
deviation from powerlaw behavior starts from a size s ~ L? where D is the fractal
dimension of the avalanche volume.

5 Relation between avalanches and surface

An avalanche disturbs and changes the surface on which it occurs and intu-
itively one might expect that there exists a relation between the properties
of an avalanche and the surface that remains after the avalanche has taken
place. On the other hand, avalanches are quite different from granular piles,
and hence a comparison is not trivial. Below we discuss two relations between
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Fig. 8. The scaling relation D (2 — 7) = % is derived by comparing the time needed
for correlations to span the whole pile and the time needed to create avalanches
that span the whole pile (see text)

the statistical properties of avalanches and the surface that they leave behind.
Subsequently, we verify whether these are obeyed in our experiments.

The first and most simple scaling relation is found by calculating the vol-
ume of a (fractal) avalanche. By definition, this volume is LY since D is the
fractal dimension of the avalanche cluster (which can be determined directly
in our experiment). On the other hand, the volume should also be equal to the
fractal surface times the fractal height. The fractal surface area is the projec-
tion of the avalanche cluster on an average (flat) plane trough the pile surface.
The area of this projection is by definition L® where dp is the surface fractal
dimension of the avalanche cluster, which can be easily obtained in our ex-
periment. The height or thickness of an avalanche is obtained by subtracting
the heights (in the direction perpendicular to the average plane, mentioned
above) of the piles before and after the avalanche. Since the avalanche modi-
fies the pile only locally, this fractal thickness scales as the surface roughness
and is proportional to L*. Combining these ingredients yields L? ~ L% L*
from which we obtain the scaling relation

D=dg+a (6)

The second scaling relation follows from the fact that the deviation from
power law behavior seen in Figure 7 occurs because avalanches above a certain
size 'feel’ that the pile is finite. We will now make this more explicit.

As stipulated above, the time evolution of an initially flat surface subject
to roughening is such that at short times its root-mean-squared width w
increases with time as w ~ t?. After some time, however, lateral correlations
extend over the whole area of the pile and w does not increase anymore: it
is limited to a pile-size dependent value w ~ L%, where L is the linear size
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of the pile and « is the roughness exponent. At the cross-over time ¢, both
relations hold from which

tx ~ L (7)

On the other hand, since this cross-over is due to correlations that start
to span the whole system, tx is also the moment when the first avalanche
occurs that spans the whole pile; by definition the size of this avalanche is
sx . Since we seed the pile with a constant rate, ¢y also is proportional to the
amount of mass M we must add to the pile to obtain such a pile-spanning
avalanche. However, before we create an avalanche of size sy, many smaller
avalanches have occurred, adding to the amount of material that we have to
add before a pile-spanning avalanche takes place. Thus the total mass M is
equal to the integral of the size distribution function up to sy, i.e. the shaded
area in Figure 8. This gives

8x 8x
ty ~M = / sP(s)ds ~ / ss Tds = si_T (8)
0 0

In the finite size scaling analysis we found that s ~ L, hence we obtain

t)( ~ Si—T ~ LD(Z—T) (9)

Combination with eq.7 yields the exponent relation
«@
D2-1)=- 10
(2-1=3 (10

Equations 6 and 10, which were previously derived by Paczuski et al.[§],

offer an interesting possibility: one can calculate the roughness and growth
exponents, « and 3, from the avalanche properties only. In the table below
we compare the values[10] from such an analysis with those obtained above
from a direct roughness analysis of the surface of the pile:
o B
from roughness analysis|0.42 (3)[0.28 (3)
from avalanche analysis|0.41 (3)]0.26 (2)
Clearly, an excellent agreement is found, which supports the underlying
assumption i.e. that SOC theory yields a valid description of the avalanche
behavior in our pile.

It is interesting to note that the values we find for the roughening of our
rice pile are very close to those observed for Kardar-Parisi-Zhang[16] (KPZ)
systems. For a 2-dimensional interface it was found from simulations that
for KPZ systems a = 0.39 and g = 0.24, rather close to the values given in
the table above. In addition, if we consider the roughening of contour lines
(lines of equal height) on our pile, we find for these 1-dimensional interfaces
a = 0.48(3) and B = 0.33 (3), while it can be shown[13] rigorously that for
1-dimensional KPZ o = 1/2 and 8 = 1/3. Strangely enough, our system is
very unlike a KPZ system: the latter is governed by a Langevin (differential)
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time

Fig. 9. Schematic representation of the spatiotemporal structure of an avalanche.
Shown are five successive stages of development of an avalanche cluster, shown in
full-grown state at the top. At the bottom the substrate area of the full-grown
avalanche is shown. As time progresses there is activity (red) or not (blue) at a
particular site. A time line running trough one site is indicated by the vertical line.
For further explanation see text.

equation, which describes the development of the interface in a deterministic
and local fashion (although the effects of disorder are very important and
must be included in the description). To the contrary, our system seems much
more random and non-local due to the occurrence of avalanches. Nevertheless
the most likely manner of change of our pile is by increase or decrease of its
height, which is most easy in a direction that is parallel to the local normal
to the surface. Exactly this is also the main ingredient in the derivation of
the KPZ equation: growth always proceeds along the local normal. Possibly,
the KPZ model extends to non-Langevin systems obeying this same growth
rule.

6 Avalanches as spatiotemporal fractals

In this section we discuss the spatiotemporal structure of the avalanches.
It is quite natural under our condition of constant seeding of the pile, to
consider all avalanches together as belonging to one super-avalanche, which
is punctuated in time. In fact, using similar theoretical ideas as above, one can
make a testable prediction for the power spectrum of this super avalanche.
To derive a scaling relation for the avalanche power spectrum exponent,
let us consider the development of an avalanche, see Figure 9. Shown are
five successive stages of the development of an avalanche cluster, which is
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Fig. 10. Powerspectrum of the avalanches of figure 6. The red line indicates pow-
erlaw behavior with a negative power of 0.27(3), very close to the value of the
growth exponent, 0.28 (3), in good agreement with SOC theory.

shown full-grown at the top. At the bottom of the Figure, the substrate area
of this avalanche is shown. At a certain moment during the avalanche a site
is changed (indicated in the middle three pictures by a red color) or not
(blue). If we consider a single site, then the behavior as a function of time is
punctuated and a time-line through such a site (indicated by the vertical line)
is a fractal. We define the length of this time-line as 7% where T is the total
time needed to create the full-grown avalanche and 8 is the fractal dimension
of the time-line (to be calculated below). If the linear size of the full-grown
avalanche cluster is I (note the change in definition of L), then (according to
similar arguments as given above concerning ¢ ) the time needed to create
such correlated cluster is T ~ L%/?. Hence the length of the time-line is
T% ~ L?%/P_ The full-grown cluster is created during the time 7" and has a
volume that is easily calculated from its substrate area L% and its height,
corresponding to the number of times 7% that activity occurred during its
growth. From this we obtain for the volume of the full-grown avalanche cluster
V = L% x L?%/% On the other hand, this size is also LP, since D is the
fractal dimension of the full-grown avalanche. Combining yields the scaling
relation

D=dg+6% (11)
B
Solving this for 8 yields
_ B _
0_(D—dB)E_ﬁ (12)

where we have used eq. 6. Hence the fractal dimension of the time line trough
a single site has the same value as the growth exponent.
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We now determine the consequence for the power spectrum. Consider first
the activity-function A (¢) for a certain timeline, such as in Figure 9. A (¢) is
one at each moment of activity and zero at all other times. On the average
the total number of ones of A during a time ¢, which we call n (t) is given by

n(t):/OtA(T)dTNt’B (13)

since the number of points on a length ¢ of time-line with fractal dimension
B is given by 7.

By definition, the temporal correlation function for the avalanche is
C(t) =(A(r) A(T + 1)), (note that this C' (¢) for activity during avalanches
is different from the C'(¢) calculated above for rough surfaces), where the
average is over all starting times 7 and all time lines. In this context, C'(¢) is
also called[8] the all-return probability Py (¢) i.e. the probability for a site
that is active at 7 = 0 to become active again at 7 = ¢. Hence[8] on the
average n (t + 1) =n (¢) + C (). Thus

dn (t)

C(t)~ =5 ~ 177! (14)

And for the power spectrum[17]:
S ~f7° (15)

An experimental power spectrum is shown in Figure 10. The red line
indicates power law behavior with a negative power of 0.27 (3). According
to eq. 15 one expects a value equal to the growth exponent 5 = 0.28 (3) as
determined above. Clearly we find a good agreement supporting again the
applicability of SOC theory.

7 How to prevent avalanches

It is rather worrying that despite vigorous efforts to prevent snow avalanches
by controlled explosions, accidents still occur. In fact, the same applies to
forest fires (notably in the National Parks in the US), where ’controlled’
burning sometimes gets out-of-hand and starts large fires. In fact, it is a
property of SOC that ’small’ disturbances may lead to big avalanches, making
control very difficult.

In Figure 11 we replot the data of a comparative study[2] of snow
avalanches in two regions of the US, one where controlled explosions were
used to try and prevent the occurrence of large avalanches and another, where
no explosions were made. Clearly, the power law distributions are very simi-
lar, whith nearly equal slope. The disturbed region shows even slightly worse
behavior: the sizes are slightly larger and the decay is slightly slower, making
large avalanches relatively more likely.
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Fig. 11. Replot of the data of Birkeland and Landry[2], showing that the avalanche
size distribution for snow avalanches is slightly *worse’ for the region where attempts
were made to prevent large avalanches by controlled explosions.
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Fig. 12. Avalanche volume versus time immediately after preparing the pile man-
ually in a rather flat state. Clearly, in the beginning large avalanches do not occur.

To investigate another method for the prevention of devastating avalanches,
we study the transient state. This is the state of the system before it reaches
criticality. The rice pile was prepared manually to be at an angle much smaller
than the critical angle (we refer to this state hereafter as ’flat’), after which
the measurement was immediately started. A detailed analysis of the multi-
scaling properties of the temporal correlation function was made[18], but here
we will concentrate on the avalanche properties.

The punctuated behavior of the avalanches is shown in Figure 12, where
we see that initially large avalanches do not occur. Indeed averaging the
avalanche sizes over 100 consecutive time-steps shows a linear increase with



14 Rinke J. Wijngaarden, Kinga A. Lérincz, and Christof M. Aegerter

6.0x10° :
5.5x10° / \ﬂ\
5.0x10" v n
45%10° J s /ﬂ

R A

4.0x107
3.5x10° s

<AV> (mm)

3.0x10° 7
2.5x10™

2.0x10° .
0 50 100 150 200 250 300 350 400 450

time (steps)

Fig. 13. Size of the avalanches of figure 12 averaged over 100 time steps. Clearly the
average avalanche size increases linearly with time while the system is developing
towards the SOC steady state.

time, see Figure 13, while the system is moving from the prepared 'flat’ state
towards steady-state SOC behavior.

Interestingly, SOC theory[8] prescribes how the system should approach
the SOC state. We call the critical slope of the rice f.. This is the maximum
slope that a rice pile can have without starting to slide. The value f. =
0.92 (1) was determined experimentally[11] (i) by slowly tilting a small box
with rice until it started to slide and (ii) from the maximum slope observed
anywhere in our large pile during many experiments.

We call the maximum slope observed anywhere in the pile at a cer-
tain instant in time G. SOC theory describes how (' approaches f. af-
ter starting from a ’flat’ state. In particular, it predicts that the average
avalanche size {AV) diverges as the SOC state is approached according to
(AV) = (f. — G)™". Combining this with the experimental observation that
(AV) ~ ¢ yields

fom Gt™ (16)

Indeed, from the experimental data we find a reasonable agreement to
this behavior, see Figure 14, except for the very beginning of the experiment.
In fact, according to SOC theory[8],[11], the observed power 1/v is given
by
1 14+dg/D —
Z = u (17)
~y 2—T
This is an interesting relation, because it connects the behavior in the
transient non-SOC state as given by v to exponents (D,dp and 7) of the
steady SOC state. Experimentally, we find 1/y = 0.8(1), while using the
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critical slope f. of rice as a function of time. The red line indicates power law
behavior with slope 0.8 (1).
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Fig. 15. Change of the avalanche size distribution exponent 7 as a function of time
in the transient state. Clearly at early times the distribution function is steeper,
making large avalanches less likely.

values obtained above for D,dp and 1, one would expect 1/y = 0.74(2),
which is a nice agreement.

In addition to the change in average avalanche size, also the avalanche
size distribution exponent 7 changes during the transient state, see Figure
15. Initially 7 is larger, indicating a faster decrease of the distribution function
with increasing avalanche size and hence a smaller chance for large avalanches.
This makes the transient state safer. An alternative to firing explosives in
(near-)critical snow masses is to disturb the snow at an early stage. Thus
the snow may be kept from developing SOC behavior. In addition, due to
the larger 7 in the transient, even if triggering provokes an avalanche, the
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chances that it is very big are significantly reduced. Similar arguments hold
for controlled burning in the prevention of forest fires.

8 Conclusions

Self-organized criticality is a class of models meant to describe punctuated
behavior in naturally occurring phenomena such as earthquakes, avalanches
and extinctions of species in biology. These wildly different phenomena have
characteristic properties, such as the size of events, that all have power law
distribution functions. The exponents of these power laws may vary from
system to system, however, SOC theory[8] gives explicit relations between
the exponents. In fact, many of the exponents can be expressed in terms of
only three of them: D, dg and .

We have experimentally investigated the statistical properties of avalanches
on a 3-dimensional pile of rice and find that avalanche sizes are indeed power
law distributed. In addition, we find that the starting point for deviations
from power law behavior scales as sy ~ L”, as predicted by SOC theory.
Using this and direct imaging of the avalanches, we have directly measured
D, dg and 7. From the properties of the surface of the pile, we independently
determined its roughness and growth exponents o and S. We have thus veri-
fied that within experimental accuracy, the scaling relations D = dp + « and
D (2 - 1) = a/p are obeyed.

In addition, we have verified that the value of the exponent of the power
spectrum of the avalanches is equal to g as predicted by another scaling
relation.

It is striking that, while we find SOC behavior in our rice pile and are thus
able to verify the exponent relations proposed by Paczuski el al.[8] for our
system, for sand the occurence of SOC is highly debated[9]. It is conceivable
that a certain minimum amount of disorder is neccessary for SOC behavior to
occur. This idea is supported by the experiments of Altshuler et al. on steel
balls[19] and by some of us on superconductors[20], and may also explain
why in the Oslo experiments[12], long grained rice (like ours) behaved as
SOC while more rounded rice did not.

In experiments that started from a manually prepared ’flat’ pile, we in-
vestigated the approach from this 'flat’ state towards the SOC state. Again,
within experimental accuracy, the scaling relation eq. 17 is corroborated by
our experiment. In the approach towards SOC, the avalanches are smaller
and their distribution is steeper, making the chance for large avalanches much
smaller than in the SOC state. It seems that the best strategy to avoid huge
avalanches is to stay away from the SOC state. That is indeed possible by
continuously disturbing the pile.
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