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Abstract

We investigate numerically the configuration of a nematic liquid crystal around two spherical particles. For the description of the orientational
order of a nematic liquid crystal, we adopt a Landau—de Gennes continuum theory in terms of a second-rank tensor orderatagether
with the use of bispherical coordinates to describe the geometry of the system with two spherical particles. Above but close to the nematic—
isotropic transition point, we observe capillary condensation of a nematic liquid crystal between the two particles under appropriate conditions.
Below the transition point where liquid crystals possess nematic order, a point-like defect called a hyperbolic hedgehog appears close to a
particle when strong normal anchoring is imposed. With the aid of an adaptive mesh refinement scheme to achieve sufficient numerical
resolution to describe topological defects, we present our numerical results showing how the orientation profile of a nematic liquid crystal is
distorted when the distance between two particles is small enough.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction have long been one of the important subjects of condensed
matter physics and the formation of topological defects due

As a novel class of composite materials, colloidal disper- to foreign inclusions provides an interesting problem con-
sions in anisotropic host fluids such as liquid crystals have cerning topological defects.
been attracting great interest in technology as well as in fun-  Another interesting, possibly more important, property of
damental scienci—14]. Many of the fascinating properties liquid crystal colloidal dispersions is that the elastic deforma-
of liquid crystal colloidal dispersions are attributed to the tion of a liquid crystal can mediate interaction between par-
elastic distortion of the host liquid crystal arising from the ticles immersed in it. This novel elastic-distortion-mediated
anchoring of the mesogenic molecules on the surfaces of theinteraction, which is of course absent in usual colloidal dis-
dispersed particles or droplets. For instance, when the sur-persions with isotropic host fluids, has been known to be
face anchoring is strong enough to induce strong elastic de-responsible for various types of superstructures formed by
formation of a nematic liquid crystal, topological defects are dispersed particles in a nematic liquid crystal, such as lin-
formed close to the particles, which include a point-like de- ear chain$2,3,5,9] anisotropic clusterd ,4,5], and periodic
fect referred to as a hyperbolic hedgeli@g], a Saturn ring lattices[11]. Cellular structures observed in a liquid crystal
that surrounds a particle as the name impl€8], and two colloidal dispersion close to the nematic—isotropic transition
surface defects known as boojuii®. Topological defects  point[7] might be attributed to interactions associated with
- paranematic ordering.
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are formed and under which conditions. There have beendefect are shown. The presence of topological defects whose
many theoretical studies to calculate the interaction poten-core size is much smaller than the size of the particles makes
tial between two particles in a liquid crysfdl4—24] which the numerical calculation quite difficult, but the use of an
have shown that it sensitively depends on the symmetry of adaptive mesh refinement scheme enables us to avoid those
the liquid crystal, the geometry of the particles, or the type difficulties as we have shown in previous papers dealing with
of topological defects that the particles carry, and so forth. systems containing one parti¢B90]. From our numerical re-
However, many of them assumed that the elastic deforma-sults, we find that when the particles are close enough, the
tion of the liquid crystal is weak enough and used a harmonic orientation profile around the particles is significantly differ-
elastic energy in terms of the order parameter (e.g., distor-ent from the one when only one particle is present. We make
tion of the director from a uniform state in a nematic, and a brief conclusion irSection 4
layer displacement in a smectic). Although such a treatment
enables one to calculate analytic formulas for the interaction
potential, the applicability of the resultant formulas is some- 2. Model
what limited; they are usually valid when the inter-particle .
distance is much larger than the characteristic dimension of2-1- Fr€€ énergy and the boundary conditions
the particles. When the particles are close enough, the use of
the harmonic energy is sometimes no longer valid, and de-
tailed information on the profiles of a liquid crystal will be
necessary to calculate the interaction potential. Then a full
non-linear elastic energy has to be employed, which makes
the analytic treatment almost impossible and therefore one
has to resort to numerical calculations. So far as we know
there have been only a few studi@b—27] calculating the
interaction between particles in a liquid crystal numerically
without the assumption of the harmonic energy.
crystal around o paricles a6  frststep towards the under-"SaLEd 5 @ singuiarif0. —

. . . . . We write the free energy density of a liquid crystal
standing of the interaction between particles mediated by the.

- . e _ in terms of Q;; as f{Q;j} = (1/2)ATrQ? — (1/3)BTrQ° +
liquid crystal host. Instead of microscopic simulations such as 2 I
molecular dynamics, we employ numerical simulations based (L/HC(TrO)* + (1/2)L19 Qi0x Oij, where, BandC are

i th int fih entati lord the coefficients in the Landau—de Gennes expansiorniand
:mn? iorn\:\?huiurr:]i eoryin n?jrrrnsntlz ¢ ne or?er_:_;l |or:ja:/ Onrt €' Pa- s the elastic constant associated with the distortion of the lig-
amete ch IS a second-rank te 0j;. The advantage uid crystal. Here we adopt a simple form of the elastic energy
of using a continuum theory is that only a small number of

- el with one-constant approximatior{ = 0). After rescaling
parameters are sufﬂc_ler)t for the specmcatpn and the controlthe order parameter ag;; = sé,-/ with s = 24/6B/9C, the
of the behavior of all|qU|d crystaI.ITo describe the geomgtry free energy density is rewritten as
of the system containing two particles, some of the previous
similar studies based on a continuum thef2$,26] used - — A6 - 1_ —
unstructured triangular grids, while Grollau et@7] used /= % = ETTrQZ - TTrQ3 + ZTrQ4
regular square or cubic grids without taking any special care o
of the curvature of the particle surfaces. In this article we use +§géak Qi Qij, (2)
bispherical coordinatg28,29]for the description of the ge-
ometry with two spherical particles of equal radii. One of the where r = A/Cs? = 27AC/8B? is the reduced tempera-
greatadvantages of using bispherical coordinates is thatundeture and we define the nematic coherence lengtbras
a simple transformation, the region outside the two spheri- \/Ll/CSZ = \/27L1C/8B2. We notice that the nematic—

cal particles can be mapped onto a rectangular region, whichjsotropic transition pointis = 1/8. In what follows we omit
makes the implementation of the differential equations and the overline ofQ;; unless confusion occurs.

the treatment of the boundary conditions at the particle sur-  The equilibrium profile of the order parametgy; is ob-
faces much easier. After presenting the mod&léction 2ve tained by solving the Euler-Lagrange equa#éiisQ;; = 0

give some of our preliminary results 8ection 31n Section with F = [ dr f{Q;;} being the total free energy of the sys-
3.1, we present the profiles of the orientational order when tem. The Euler—-Lagrange equation reads

the temperature is above but close to the nematic—isotropic
transition point. Under suitable conditions with small inter- 3V6 2
. . : - 1Qij — —— Qi Qij + (TrQ*) Q;;
particle distances, a nematic region is shown to appear be- 4
tween the part|_cles even whe_n an |_sotrop|c State is s_tab_le in _ngszij + a8 =0, )
the bulk. InSection 3.2the configurations of a nematic liquid
crystal around two particles carrying a hyperbolic hedgehog wherea is the Lagrange multiplier to ensuredr= 0.

To describe the orientational order of a nematic liquid

crystal, we use a second-rank tensor order paranggf¢s1],

whichis symmetricQ;; = Q ;) andtraceless (0 = Q;; =

0, where summation over repeated indices is implied). In an

isotropic stateQ;; = 0 and in a uniaxial nematic oriented

along the directon, Q;; = Q(n;n; — (1/3)3;;), with Q be-

'ing a scalar order parameter representing the strength of the
nematic order. We note that the employmenidf is con-
sistent with the head-tail symmetry of a nematic<¢ —n)
and that the core of a topological defect does not have to be
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Fig. 2. Profiles of the orientational order of liquid crystals (gray-scale plots
of TrQ?). In the white regions the liquid crystals are in the isotropic state and
in the black region they possess nematic order: (a) absence and (b) presence
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S0 of a nematic capillary bridge, respectively.
SIS >

Qs = 0.7. In Fig. Za) two particles carry nematic coronas,
which are almost uncorrelated, whileig. 2(b) clearly

We impose rigid normal anchoring at the particle sur- shows capillary condensation of a nematic liquid crystal,
faces so that the order parameter beco@gs= Qs(v;v; — or a “nematic capillary bridge”. The capillary bridge can
(1/3)5;), where Qs is some prescribed scalar order param- be at least metastable unfil is as large as about@Ro.
eter at the surfaces andis a unit vector normal to the  The comparison of the free energy of those two states can
particle surfaces. In the case of a liquid crystal above the be carried out and the condition for the preference of the
nematic—isotropic transition point, we s@t; = 0 at infin- nematic capillary bridge can be determined. In the case of
ity. Below the transition point, we assume uniform align- Fig. 2with D = 2.4Rq, the presence of a nematic capillary
ment of the nematic liquid crystal at infinity. The direction bridge is energetically more favorable and the absence of a
of the uniform alignment is taken along thedirection and capillary bridge corresponds to a metastable state. Although

Fig. 1. lllustration of typical meshes in a real space.

we impose Q;; = Qbmk(efej: —(1/3))) = Qou(8iz8j; — the details of the analysis will be presented in a future article,
(1/3)8i7), where Qpuik is the scalar order parameter in the we notice that the presence of a nematic capillary bridge
bulk and determined by the Euler-Lagrarig (2) leads to strong attraction between two particles. Intuitively,
the strong attraction can be attributed to the increase in the
2.2. Description of the geometry using bispherical interfacial area between the nematic and the isotropic phase
coordinates (and therefore the increase in the free energy of a liquid crys-

tal) with the increase of the inter-particle distance (when the
Bispherical coordinatel28,29] have proven to be useful temperature is higher than the transition point, the increase
and practical in the description of a system composed of two in the volume of the metastable nematic region also leads to
non-intersecting spheres. The relation between the bispheri-the increase in the free energy). We notice that the strong at-
cal coordinates{( 1, ¢) and the usual cylindrical coordinates tractive force due to the nematic capillary bridge close to the
(p, z, ¢) is expressed as nematic—isotropic transition point has indeed been observed
asinp asinhz in recent experiments using an atomic force micros¢8pg

= — 3)

P= coshté —cosp” ~ coshe — cosp’

. B 3.2. Nematic state

For the case of two spheres with equal ragii whose
centers are located at= +D/2, p = 0 (D > 2Ro), we set As noted in the introduction, when a particle that imposes
a=,/(D/2)? - Rg. Then the surfaces of the two spheres are strong homeotropic anchoring is immersed in a uniformly
represented simply b= £ = cosh™1(D/2Ro). The region aligned liquid crystal, a topological defect accompanies the
outside the spheres is mapped-&y < & < & and 0< . < particle to preserve the neutrality of the topological charges.
7 andé = ;1 = 0 corresponds to infinity. IFig. 1 we show When the particle is large enough compared to the size of the

. . fect core, a point-like defect called a hyperbolic hedgeho
t I mesh | ted f I € -ap yp genog
%ZISCS e;n iisth:(lz)asrsscgpace generatedirom equaty space% formed[2,3,14] Particles carrying a hyperbolic hedgehog

act as a dipole, which results in a chain-like superstructure of

particleqg2,3,5,9] Due to the balance between the long-range

3. Results attraction of the “dipoles” and the short-range repulsion due
to the presence of a topological defect between the particles,

3.1. Above and close to the nematic—isotropic transition two adjacent particles take a well-defined inter-particle
distance, which stabilizes the chain-like structure.

Fig. 2 shows typical profiles of the orientational order In Fig. 3 we show several equilibrium profiles of the
parameter just above the nematic—isotropic transition point orientational order around two particles carrying a hedgehog
(r =1/8+ 0). The distance between the centers of the in a nematic liquid crystal uniformly oriented along the
particles isD = 2.4Rp, and the nematic coherence length horizontal direction. The distance between the center of the
is &g = 1072Rg. The surface order parameter is set to particlesD is fixed to (a) 50Ro, (b) 30Rg, and (c) 228Ro.
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Fig. 3. The profiles of the orientational order of a nematic liquid crystal fob(&) 5.0Rg, (b) D = 3.0Rp and (c)D = 2.28Ry (gray-scale plots OQ2 where
thez-axis is along the horizontal direction).

The directions of the two “dipoles” are set parallel. This a situation where two particles are immersed in a uniformly

configuration is similar to a part of the chain-like structure aligned nematic liquid crystal and each patrticle carries a hy-

observed experimentally. We have used the temperatureperbolic hedgehog defect. When the particles are far apart,

T = (36— 8)/12 < 0, where an isotropic state becomes their orientation profiles are almost independent of each other

unstable and the scalar order parameter in the bulk isand similar to that around one isolated particle. As the inter-

Opulk = 1. The scalar order parameter at the particle surface particle distance becomes smaller, strong elastic distortions

Qs is set equal toQpyk- The nematic coherence length is from the long-distance profiles are observed. The hedgehog

taken agr = 5 x 1073Ro. We notice that the grid spacings defect situated between the two particles eventually becomes

on the left-hand side of the left particle in real space are not unstable and opens up to form a larger ring. In this article

small enough for the description of a topological defect as we have restricted ourselves to the presentation of the con-

can be seen frorkig. 1, so we have used an adaptive mesh figurations of a liquid crystal around two particles. The in-

refinement scheme developed in our previous paE&jso vestigation of the interaction energy between two particles is

assign finer grids around the topological defects. possible and the results will be presented in future articles.
In Fig. 3a) with D =5.0Rq, the orientation profiles

around each particle are almost independent of each other,

while in Fig. 3(b) with smaller D (3.0Rp), slight deforma- References
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