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Abstract
We model a system of particles suspended in a viscous fluid circle in optical
vortices generated by holographic optical tweezer techniques (Curtis and Grier
2003 Phys. Rev. Lett. 90 133901) and show that hydrodynamic interactions
between the circling particles determine their collective motion. We perform
a linear-stability analysis to investigate the stability of regular particle clusters
and illustrate the limit cycle to which the unstable modes converge. We clarify
that drafting of particle doublets is essential for the understanding of the limit
cycle.
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1. Introduction

Hydrodynamic interactions occur between particles or bodies whenever they move relative
to each other in a viscous fluid. Due to their long-range nature, they are important for the
dynamic properties of colloidal suspensions exemplified by self-and collective diffusion [1–
4], sedimentation [5–7], or aggregation of particles [8]. Through the correlated motion of a pair
of colloids trapped in optical tweezers, one can directly measure the effect of hydrodynamic
interactions [9–12]. Furthermore, hydrodynamic interactions give rise to interesting collective
behaviour, e.g., periodic or almost periodic motions in time [13, 14] or even transient chaotic
dynamics in the sedimentation of particles [15], and they lead to pattern formation of rotating
motors [16] with a possible 2D melting transition of biological motors such as ATP-synthase
embedded in a membrane [17]. Hydrodynamic interactions are treated in the low-Reynolds-
number regime which is also relevant for biology. It determines the problem of how micro-
organisms move forward [18]. Certain bacteria accomplish this, e.g., by cranking helical
flexible rods [19]. In addition, recent experiments show that laminar flows initiate the
asymmetries between the right- and left-hand side of the body at an early stage of the embryonic
development [20–22].

The work presented here is motivated by experiments of Curtis and Grier [23]. They
created toroidal optical traps known as optical vortices with the help of holographic techniques.
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Figure 1. Definition of our model system of an optical vortex. The particles are driven by a constant
tangential force and trapped in the ring by a harmonic radial force. In order to avoid overlaps, the
particles repel each other at very short distances.

In the bright circumference of an optical vortex, they could trap particles which circulated
around the ring due to scattering forces which result from the orbital angular momentum of light.
In this paper, we model the system of circling particles. We demonstrate that hydrodynamic
interactions determine their interesting collective motion which we analyse by methods used
in the study of non-linear dynamics. In particular, we identify a limit cycle which is governed
by drafting of particle doublets.

The outline of the paper is as follows. In section 2, we first define our model system of
particles moving in a ringlike trap and summarize the basic equations for the description of the
dynamics. The stability of regular N-particle clusters in the ring is investigated in section 3
by means of a linear stability analysis. Section 4 then describes the nonlinear dynamics of
perturbed clusters. We introduce the periodic limit cycle of the three-particle system and
perform a harmonic analysis. The influence of the trap strength on the dynamics is discussed.
Furthermore, we briefly address the dynamics in fairly weak traps. Finally, in section 5, we
present the particle velocities as a function of ring radius and particle number.

2. Modelling particle dynamics in a toroidal optical trap

We consider non-Brownian, equal-sized spherical particles suspended in a viscous fluid in
the regime of low Reynolds numbers whose mutual interactions are solely of hydrodynamic
origin. We mimic the basic features of particles captured in an optical vortex by applying a
constant tangential force Fφ to each particle and by keeping the particles on a ring of radius
R by means of a harmonic radial trap with force constant K r (figure 1). The particle motion
is effectively two dimensional in the plane of the ring (z = 0); thus, the particle positions are
best described by polar coordinates, ri and φi . With the radial and tangential unit vectors at the
position of particle i , er

i = (cos φi , sin φi , 0) and e
φ

i = (− sin φi , cos φi , 0), the total external
force acting on particle i then reads

Fi = Fφe
φ

i − K r(ri − R)er
i . (1)

Note that the assumption of a constant tangential driving force Fφ is a rough approximation
since the intensity profile of an optical vortex is modulated along the ring as described by
the topological charge � of the vortex [23]. However, if � is large so that the period of
the modulations is small compared to the particle size, then our approximation seems to be
reasonable.
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In order to prevent particles overlapping in the simulations, we add a repulsive interaction
which becomes relevant only when two particles are very close to each other. We use a hard-
sphere-type interaction potential where a ‘hard core’ with diameter 2a is surrounded by a ‘soft’
repulsive potential (figure 1) [28]:

V rep(ri j ) = W
[( ri j

2a

)m − 1
]−1

. (2)

Here, ri j is the centre-to-centre distance between particles i and j , and a is the particle radius.
This choice is primarily for numerical reasons, but can nevertheless be justified from the
physical point of view since even hard-sphere-like colloids show a ‘soft’ repulsive potential at
very short distances [28]. We choose the commonly used Lennard-Jones exponent m = 12 so
that the repulsion only acts at very short distances, and we tune the prefactor W such that the
minimal inter-particle gap ri j − 2a in the simulations is of the order of 10−4a.

In the regime of low Reynolds numbers, the flow of an incompressible fluid with viscosity
η obeys the Stokes or creeping flow equations [24, 25, 2]

η∇2u − ∇ p = 0, ∇ · u = 0, (3)

where u is the flow field and p the hydrodynamic pressure. Imposing stick boundary conditions
on the surfaces of all particles suspended in the fluid, the motions of the particles are mutually
coupled via the flow field. Due to the linearity of (3), the translational and rotational velocities
of the particles, vi and ωi (i = 1, . . . , N), depend linearly on all external forces and torques
acting on the particles, F j and T j [24, 25, 2]:

vi =
N∑

j=1

(
µtt

i jF j + µtr
i jT j

)
, ωi =

N∑
j=1

(
µrt

i jF j + µrr
i jT j

)
. (4)

The central quantities are the 3 × 3 mobility tensors µtt
i j , µrr

i j , µtr
i j , and µrt

i j . They depend on
the current spatial configuration of all particles, i.e., the set of position vectors {r1, . . . , rN } in
the case of spherical shape.

As there are no external torques in our model, i.e., T j ≡ 0, and as we are not interested in
the rotational motion of the particles, the remaining equation of motion for our problem is

ṙi ≡ vi =
N∑

j=1

µtt
i jF j . (5)

Since the mobility tensors µtt
i j are nonlinear functions of all particle positions {rk}, (5) describes

the coupled nonlinear dynamics of N particles.
The first-order approximation (with respect to inverse particle distances ri j ) for the

mobilities of particles moving in an unbounded and otherwise quiescent fluid is the well
known Oseen tensor [2]

µtt
i j = 3µta

4ri j

(
1 +

ri j ⊗ ri j

r2
i j

)
, (6)

where µt = (6πηa)−1 is the Stokes mobility for a translating sphere; the self-mobilities are
µtt

i i = µt1. All the other mobility tensors in (4) vanish in this approximation. Note that
the Oseen tensor is the Green function of the Stokes equations (3); i.e., it considers pointlike
particles and hence does not include rotational couplings.

Higher order approximations of all mobility tensors can be calculated, e.g., via the
multipole expansion method [26]. It has been implemented in the numerical library
HYDROLIB [27], which we use in our simulations. For the numerical integration of the highly
nonlinear equation of motion (5), we apply a fourth-order Runge–Kutta scheme. The time
step is chosen such that the corresponding change in the angular position is of the order of 1◦.
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Figure 2. Regular N -particle clusters.

3. Stability analysis of regular clusters

In this section, we study the stability of regular N-particle clusters. By ‘regular’ we mean
configurations with N-fold symmetry, like the ones shown in figure 2. Due to this symmetry,
all particle positions are equivalent; i.e., the angular velocity φ̇i has to be the same for all
particles. The radial positions of the particles do not change either, which can also be justified
by a simple symmetry argument. Let us start with a regular configuration where ri = R for
all particles, so there is no radial force component in (1). Due to linearity, ṙi ∝ Fφ , which
means that changing the direction of Fφ inverts the direction of ṙi . However, since there is no
difference if the cluster rotates clockwise or anticlockwise, the radial velocity must be the same
for both directions; i.e., ṙi ≡ 0 and ri ≡ R. Therefore, a regular cluster remains unchanged
and rotates with constant frequency �N .

In regular clusters, the particles are well separated for sufficiently large radius R, and
we may approximate the hydrodynamic interactions by the Oseen tensor (6). The particle
positions of the regular clusters are given by ri = R and φi = �i(t) = (2π/N)i + �N t . With
Fi = Fφe

φ

i , we derive from (5) the rotational frequency of an N-particle cluster,

�N = �1

[
1 +

3

4

∑
j �=i

1

Xi j

1 + 3 cos �i j

2

]
, �1 = µt Fφ

R
, (7)

where Xi j = √
2(R/a)

√
1 − cos �i j and �i j = (2π/N)( j − i) are the respective spatial and

angular distances between particles i and j .
To investigate the stability of these N-particle clusters against small radial and angular

particle displacements, we introduce ri = R[1 + δρi(t)] and φi = �i(t) + δφi(t). Using the
forces (1) and the Oseen tensor (6), we linearize the equation of motion (5) in terms of the
small perturbations δρi and δφi :

d

dτ
δρi (τ ) = −Kδρi(τ ) +

3

4

∑
j �=i

[
1

Xi j

(
(5 − 3 cos �i j) sin �i j

4(1 − cos �i j)
+ K1 − 3 cos �i j

2

)
δρ j(τ )

]

− 3

4

[∑
j �=i

1

Xi j

3(1 − cos �i j)

4

]
δφi(τ ) +

3

4

∑
j �=i

[
1

Xi j

3(1 − cos �i j)

4
δφ j(τ )

]
,

d

dτ
δφi (τ ) = −

[
1 +

3

4

∑
j �=i

1

Xi j

3(1 + 3 cos �i j)

4

]
δρi (τ )

− 3

4

∑
j �=i

[
1

Xi j

(
1 + 3 cos �i j

4
+ K3 sin �i j

2

)
δρ j(τ )

]

− 3

4

∑
j �=i

[
1

Xi j

(7 − 3 cos �i j) sin �i j

4(1 − cos �i j)
δφ j(τ )

]
, (8)
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Figure 3. Representative example of the angular coordinate of an unstable oscillating mode (here
N = 4, R/a = 10, and K = 10). The linear theory and the simulations agree very well up
to amplitudes of several per cent of 2π/N . (Only every 100th data point from the simulation is
plotted.)

Table 1. Number of eigenmodes classified by their eigenvalues λ for even and odd particle numbers
N . R± means a positive or negative real number. (i) Constant angular shift, (ii/iii) non-oscillating
damped or unstable modes, (iv/v) oscillating damped or unstable modes.

(i) (ii) (iii) (iv) (v)
N λ = 0 λ ∈ R− λ ∈ R+ Re λ < 0 Re λ > 0

Odd 1 1 — N − 1 N − 1
Even 1 2 1 N − 2 N − 2

where τ = �1t is the reduced time, and the dimensionless parameter K = K r R/Fφ

measures the strength of the radial trap relative to the tangential driving force. The
corresponding eigenvalue problem was solved numerically by using the computer algebra
package MAPLE. This analysis reveals that there are the following types of stable and
unstable eigenmode (depending on the number of particles) for the coupled displacements
(δρ1(τ ), . . . , δρN (τ ), δφ1(τ ), . . . , δφN (τ )): (i) a constant angular shift, (ii/iii) non-oscillating
damped or unstable, and (iv/v) oscillating damped or unstable. Figure 3 shows an example of
an unstable oscillating mode (type v). In table 1, we give the number of eigenmodes classified
by their eigenvalues λ for even and odd particle numbers.

The occurrence of stable and unstable modes can be compared to a saddle point in the
framework of the analysis of dynamic systems. A cluster configuration with arbitrary small
radial and angular displacements of the particles is practically unstable since contributions of
unstable modes will grow, while stable modes will relax to zero.

For N = 3, we have also determined the eigenvalues analytically by an expansion to first
order in a/R:

λ1 = 0 (type i),

λ2 = −K
(

1 −
√

3

10

a

R

)
(type ii),
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Figure 4. Dynamic transition in the angular coordinate from an unstable linear mode to the periodic
limit cycle for three particles (R/a = 10). The main curve and the insets (a), (b), and (d) show the
angle φ(t) relative to �N t as a function of time. In inset (c), φ(t) − 〈�〉t is plotted. Plots (a)–(c)
correspond to the a stiffness of K = 10. For comparison with (b), the transition regime forK = 100
is shown in (d). The dashed lines indicate the limit cycles.

λ3,4 = −K −
[(√

3

20
+

27
√

3

32

1

K

)
± i

13
√

3

32

]
a

R
(type iv),

λ5,6 =
(

27
√

3

2

1

K ± i
17

√
3

32

)
a

R
(type v).

In this case, a non-oscillating unstable mode (type iii) does not exist; it only occurs for even
N (see table 1).

4. Nonlinear dynamics of perturbed clusters

The amplitude of an unstable mode grows up to a certain magnitude in agreement with the
linear analysis, until the nonlinear dynamics takes over (see figure 3). The amplitudes saturate,
and the system finally tends towards a periodic limit cycle with oscillating particle distances.
In figure 4 we show an example of such a dynamic transition from an unstable linear mode to
the periodic limit cycle by plotting the angular coordinate φ(t) relative to �N t as a function
of time. Note that �N is the rotational frequency of the regular N-particle cluster introduced
in (7).

The mean slope in each of the two regimes (linear mode and limit cycle) gives a well
defined mean orbital frequency 〈�〉, which is �N for the linear mode. Clearly, 〈�〉 and
therefore the mean velocity of the particles is increased by the transition to the limit cycle,
which means that the mean drag force on the particles is reduced.

The character of the transition depends on the trap stiffness. It is quite sharp for weaker
traps, where the transition takes place within a few oscillations, as shown in figure 4(b). For
stronger traps, the mean frequency increases smoothly from the linear regime to the limit cycle,
which is illustrated in figure 4(d). Furthermore, the onset of the transition is shifted to later
times when the trap becomes stiffer.

Figure 5 introduces the basic mechanism underlying the periodic limit cycle. Two particles
in close contact move faster than a single particle since the friction per particle is reduced due
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Figure 5. Basic mechanism of the periodic limit cycle. Two particles in close contact move faster
than a single particle. When this pair reaches the third particle, they form an intermediate triplet,
and finally the first two particles escape as a new pair.

M An MPEG movie of this figure is available from stacks.iop.org/JPhysCM/16/S4085
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Figure 6. Fourier spectrum (cos-coefficients a(ω) and sin-coefficients b(ω)) of the periodic limit
cycle of three particles. Note that the frequencies ω are defined relative to the mean orbital frequency
〈�〉.

to the well known effect of drafting. When such a pair reaches the third particle, they form a
triplet for a short time. In this configuration, the mobility of the middle particle is larger since
it is ‘screened’ from the fluid flow by the outer particles. It therefore pushes the particle in
front, so that the first two particles ‘escape’ from the last one. The same principle also holds
for more than three particles. In these cases, there can be more than one pair of particles.

For the limit cycle of three particles, we have performed a harmonic analysis using
fast Fourier transformation. In order to separate the fast orbital dynamics of the particles
(characterized by the mean angular frequency 〈�〉) from their relative motions, we calculate
the Fourier transform of φ(t) − 〈�〉t = ∑

ω[a(ω) cosωt + b(w) sin ωt]. This yields the
fingerprint of the dynamics relative to the mean circling velocity. In figure 6, we show the
corresponding Fourier spectrum. Besides the characteristic frequency ω∗ of the limit cycle,
the higher harmonics 2ω∗ and 3ω∗ are also very pronounced.

The characteristic frequency ω∗ decreases with increasing ring radius,as shown in figure 7,
because it takes longer for a particle pair to reach the third particle on a larger ring. At constant
ring radius, the characteristic frequency increases with the trap stiffness since particles in a
stronger trap are better aligned along the ring, which makes the mechanism of the limit cycle
more effective.

If the strength of the radial trap is decreased, the radial displacements of the particles
increase so that they can pass each other. This happens at a reduced trap stiffnessK = K r R/Fφ

of the order of unity. For three particles and four particles, the limit cycle then consists of a
compact triangular or rhombic-shaped cluster circling and rotating in the trap.

For four particles, we also find the limit cycle illustrated in figure 8. It occurs if the
radial trap has medium strength so that compact particle clusters only have a finite lifetime.

http://stacks.iop.org/JPhysCM/16/S4085
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Figure 7. Characteristic frequency ω∗ of the periodic limit cycle of three particles versus ring
radius R. The different curves are related to different trap stiffnesses K r .

Figure 8. Dynamics of four particles in a weak radial trap. The motion shown is relative to the
mean rotation along the ring trap. Only the relevant part of the ring is shown; the centre of the ring
is located at the bottom of the snapshots. The particles are running from right to left. During one
cycle, the first and the third particle are exchanged. The particles are shaded differently in order to
distinguish them.

M An MPEG movie of this figure is available from stacks.iop.org/JPhysCM/16/S4085

The first particle on the left is pushed in an outward radial direction by the particles behind
it and subsequently passed by the second particle. It, then, pushes the third one in an inward
radial direction, which in turn takes over the lead of the chain. Finally, the initial state is rebuilt,
where the first and the third particle are exchanged. Note that there is an intermediate state
where the particles form a compact rhombic-shaped cluster, which, however, is not stable.

5. Particle velocities

In figure 9(a), we study the circling frequencies of regular clusters as a function of particle
number N for different ring radii R. At constant radius, the frequency increases with the
number of particles since then the particles are closer together which reduces the drag. Note
that for less than four particles, the frequency is reduced relative to the single-particle value.
Here, hydrodynamic interactions across the ring increase the drag on the particles. This effect
is clearly more pronounced for small rings.

At constant particle distance 2π R/N or constant line density of the particles N/(2π R),
the drag is reduced when the ring radius increases (see figure 9(b)). This is due to the fact that
in a ring with smaller curvature the particles are better ‘aligned’ behind each other.

In the limit cycle, discussed in the previous section, the mean orbital frequency is
larger than the velocity of the corresponding regular configuration. The quantitative effect

http://stacks.iop.org/JPhysCM/16/S4085
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the frequency of a single sphere. The upper three curves are plotted for different trap stiffnesses
K r . For comparison, the lower curve shows the values for the regular three-particle cluster. The
errorbars indicate the range within which the orbital velocities vary in the limit cycle.

is illustrated in figure 10. We attribute this to the drafting of particle doublets which obviously
reduces their drag force. We observe that the dependence of the limit-cycle velocity on the
trap stiffness is weak, in contrast to the characteristic frequency of the angular displacements,
as already discussed in figure 7.

6. Conclusion

We have modelled the circling of particles in an optical vortex and illustrated how
hydrodynamic interactions govern the nonlinear dynamics of the coupled particle motion. We
hope that our theoretical investigation initiates a detailed study within experiments. Possible
extensions of our work concern the tangential driving force which could be modulated along
the ring or which could possess stochastic contributions.
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