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Structure and tracer-diffusion in quasi–two-dimensional
and strongly asymmetric magnetic colloidal mixtures
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PACS. 82.70.Dd – Colloids.
PACS. 05.40.Jc – Brownian motion.
PACS. 05.10.Gg – Stochastic analysis methods (Fokker-Planck, Langevin, etc.).

Abstract. – We study theoretically and experimentally static and diffusional properties of
a strongly asymmetric binary mixture of super-paramagnetic colloids confined to an air-water
interface. The colloids interact via repulsive dipolar forces, induced by a magnetic field ap-
plied perpendicular to the planar interface. Brownian dynamics (BD) computer simulations
are employed to analyse the microstructure and the tracer-diffusion of both components. The
profound interaction asymmetry leads to unusual features in the partial pair distribution func-
tions, and to significantly enhanced tracer-diffusion. We find good agreement between our
experimental data and the computer simulation results.

Introduction. – A lot of effort has been devoted over the past years to study the structural
and dynamical properties of quasi–two-dimensional (Q2D) model dispersions of monodisperse
super-paramagnetic colloidal spheres confined to a liquid-gas interface and interacting by
induced repulsive dipolar forces [1–4]. These model systems are of particular interest both
from the experimental and theoretical point of view, since the interaction potential is well
characterised and the two-dimensional trajectories can be followed over an extended time range
using video imaging. The interaction strength can be precisely tuned by the applied magnetic
field. This allows to study in great detail interesting phenomena like the freezing and melting
transition via an intermediate hexatic phase of quasi–long-range orientational order [5].

While static properties are independent of the solvent flow, it is known that the dynamics
of Q2D monodisperse systems is strongly affected by the solvent-mediated hydrodynamic
interactions (HI). This gives rise to remarkable effects like the divergence of certain short-
time diffusional transport coefficients [3, 4, 6], and the enhancement or de-enhancement of

(∗) E-mail: g.naegele@fz-juelich.de

c© EDP Sciences



920 EUROPHYSICS LETTERS

self-diffusion. For short-range particle forces it has been found that HI causes a slowing-down
of self- and collective diffusion in two- and three-dimensional dispersions [7]. For long-range
repulsive interactions, there is instead a hydrodynamic enhancement of self-diffusion, as shown
recently for magnetic Q2D systems [1–4], wall-confined charged-stabilised Q2D colloids [6], and
also for three-dimensional charge-stabilised dispersions [8, 9]. Q2D systems with long-range
repulsive interactions show further an interesting dynamic scaling behaviour. As a consequence
of dynamic scaling, the freezing point can be characterised by various equivalent dynamic
freezing criteria in terms of long-time self- and collective-diffusion properties [3, 4, 10,11].

While quite some work has been done on monodisperse Q2D systems, very little is known
on binary Q2D dispersions. Two-component Q2D and three-dimensional systems exhibit
additional interesting features not present in monodisperse systems, like two-stage vitrification
for strongly asymmetric components, where the more strongly interacting component becomes
structurally arrested first, and interdiffusion processes. Furthermore, two-component systems
do not show simple scaling behaviour, thus invalidating the static and dynamic freezing criteria
and the generalised Stokes-Einstein relations obeyed approximately in the monodisperse case.

In this letter, we study the microstructure and the tracer-diffusion of fluid binary Q2D
dispersions of super-paramagnetic particles at a water-air interface, where the two components
are very different in the strengths of the dipolar magnetic repulsion. Particular focus is given to
reveal the influence of HI on the tracer-diffusion of the particles. For this purpose we compare
BD results for the reduced mean-squared displacements of both components with and without
far-field HI included with corresponding experimental results on micrometer-sized particles
obtained from video imaging. As we will show subsequently, the good agreement between
our simulations with HI and the experiments clearly demonstrates the strong hydrodynamic
coupling of the particles. The BD scheme with HI can thus be faithfully used even for a
quantitative exploration of strongly asymmetric two-dimensional colloidal fluids.

Experimental setup. – The characterisation, preparation and measurements of two-
component dispersions of magnetic colloids follow essentially the procedure described in [5].
Therefore we only briefly summarise the essentials: experiments have been performed on
binary mixtures of spherical super-paramagnetic colloids of particle radii a1 = 2.35µm,
a1 = 1.4µm and mass densities ρ1 = 1.6 kg/dm3, ρ2 = 1.3 kg/dm3 confined by gravity to
a water-air interface of a hanging drop in a top-sealed ring. The flatness of the water-air
interface with diameter of 8 mm is controlled within a maximal height variation of ±1µm.
The particle monolayer at the interface consists of about 105 particles, out of which about
103 particles near the centre of the interface are tracked in time steps of ∆t = 0.2 s using real-
space video imaging. Since an isolated particle needs about 100 s to diffuse a distance equal
to its own diameter, more than a one-day measurement is required to monitor each of the
mean-squared displacements discussed in this work. A weak magnetic field B applied perpen-
dicular to the interface induces magnetic dipole moments, Mα = χα B, in the Fe2O3-doped
super-paramagnetic particles of component α ∈ {1, 2}, with effective magnetic susceptibili-
ties χ1 = 6.2 · 10−11 Am2/T and χ2 = 6 · 10−12 Am2/T. The long-range magnetic repulsion
between two spheres of components α and β a distance r apart in the interface is thus well
described by the dipolar pair potential uαβ(r), with

uαβ(r)
kBT

=
ΓαΓβ

x3
. (1)

Here, x = r/r0 is a reduced distance, with r0 = n−1/2 denoting the geometric mean particle
distance related to the total area number density, n = n1+n2, of both components. In eq. (1),
we have further introduced the dimensionless coupling amplitude Γα = [µ0/(4π kBTr3

0)]
1/2Mα
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of component α with ΓαΓβ quantifying the interaction energy between two particles of com-
ponents α and β, respectively, a distance r0 apart from each other. We point out that the
interaction energy between two 1-particles separated a distance r0 is approximately 102 times
larger than the interaction energy of two 2-particles at the same distance.

Brownian dynamics simulations. – The BD finite-difference equation describing the in-
plane displacement of N spherical Brownian particles immersed in a fluid of viscosity η during
a time step ∆t is given by [12]

Ri(t + ∆t) − Ri(t) =
N∑

j=1

[βDij(RN ) · F P
j + ∇j · Dij(RN )]∆t + ∆Xi + O(∆t2) . (2)

Here, RN = {R1, . . . ,RN}, with Ri(t) denoting the position vector pointing to the centre
of sphere i at time t, F P

j = −∇j

∑N
k<i uik(Ri − Rk) is the total direct force on particle

j due to all other N − 1 particles, and ∆Xi is a random displacement vector of particle
i originating from the collisions with solvent particles. The random displacement ∆Xi is
sampled from a Gaussian distribution with zero mean, 〈∆Xi〉 = 0, and covariance matrix
〈∆Xi ∆Xj〉 = 2 Dij(RN )∆t.

The brackets indicate a canonical (NVT) equilibrium ensemble average and we employ
here the polyadic tensor notation. The solvent-mediated HI between particles i and j are
accounted for in the BD algorithm through the hydrodynamic diffusivity tensors Dij(RN )
which depend, in principle, on the configuration RN = {R1, . . . ,RN} of all N sphere centres
at time t. For the strongly repelling and rather dilute dispersed colloidal particles under
consideration, the HI are dominated by their pairwise additive long-range part. Therefore, we
can treat Dij within good accuracy on the Rotne-Prager (RP) approximation level, i.e. [7,13]

Dij(RN ) ≈ D0,f
i [δij1 + (1 − δij)T RP

ij (Ri − Rj)] , (3)

where 1 is the unit tensor, δij is the Kronecker symbol, and D0,f
i denotes the in-plane free-

diffusion coefficient of a sphere i ∈ {1, ..., N}. The Rotne-Prager tensor, TRP
ij , reads explic-

itly [7, 13]

T RP
ij (r) = ai

[
3
4r

[1 + r̂r̂] +
1
4

a2
i + a2

j

r3
[1 − 3r̂r̂]

]
, (4)

with r̂ = r/r. The in-plane free-diffusion coefficient D0,f
i is somewhat larger than the Stoke-

sean translational diffusion coefficient, D0
i = kBT/(6πηai), of an isolated sphere in an un-

bounded fluid. Since we consider only tracer diffusion properties normalised by the correspond-
ing D0,f

i , the actual values of the in-plane free-diffusion coefficients are here of no concern.
The finite-difference equation (2) is solved using an Euler scheme with typically 200 par-

ticles. For calculating the dipolar forces F P
j , the simulation square is periodically repeated

in two dimensions. The long-range nature of HI inherent in Dij is accounted for by employ-
ing a two-component Ewald-type summation technique on the Rotne-Prager level developed
by Beenakker [14]. To integrate eq. (2) we have used a fixed time step 2 × 10−4τ1, where
τ1 = 1/(nD0,f

1 ) is the time needed for a free particle of component 1 to diffuse approximately
an interparticle distance n−1/2. After equilibration several thousand time steps were generated
by the BD algorithm to obtain particle mean-squared displacements and radial distribution
functions.

The BD simulation code with HI included has been extensively tested for monodisperse
super-paramagnetic Q2D systems in comparison with experimental data [1], and alternative
BD simulation codes [6]. Very good agreement has been found in all cases considered.
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Fig. 1 – Binary suspension of super-paramagnetic particles with system parameters B = 1.26 mT,
n = n1 + n2 = 4.08 · 10−3µm−2 and n1/n2 = 1.043. The values for the magnetic susceptibilities,
χα, and particle radii, rα, are given in the text. (a) Partial radial distribution functions, gαβ(r), vs.
reduced distance r/r0. (b) BD simulation results with and without HI and experimental results for
the reduced tracer-diffusion functions, Dα(t), vs. reduced time t/τ1, with τ1 = r2

0/D0,f
1 . Inset: BD

results for Dα(t) vs. t/τα.

Discussion. – We first assess the reliability of the BD scheme by comparing the numer-
ically determined partial pair correlation functions, gαβ(r), with the video imaging results.
Here, nβgαβ(r) is the average number density of β-type particles a distance r apart from the
centre of a given α-particle. Two different binary mixtures of magnetic particles are considered.
The two mixtures share the same values for the magnetic susceptibilities χα and radii aα. The
first system is characterised by a total number density of n = n1+n2 = 4.08 ·10−3 µm−2, with
number ratio n1/n2 = 1.043. The externally applied magnetic field strength is B = 1.26 mT,
with coupling amplitudes Γ1 = 38.9 and Γ2 = 0.493 for water at room temperature. Note that
the excluded-volume interactions are of no relevance due to the strong magnetic repulsion,
even of the type 2 particles. Simulation and experimental results for the three partial radial
distribution functions, gαβ(r), of the first mixture are shown in fig. 1a.

The partial radial distribution functions of the second mixture are depicted in fig. 2a. Here,
the system parameters are n = n1 + n2 = 2.31 · 10−3 µm−2, n1/n2 = 0.313 and B = 2.95 mT.
This results in a mean particle distance r0 = 20.8µm, and in partial coupling amplitudes
Γ1 = 91.8 and Γ2 = 1.16. While this system is more dilute than the first one, the particles are
more strongly coupled due to the higher magnetic field strength. As seen, the gαβ(r) of both
systems exhibit pronounced oscillations with well-developed next-neighbor shells, at distances
comparable to r0. We further observe the expected ordering r11 > r12 > r22, where rαβ is the
location of the principal maximum of gαβ(r). In contrast, the BD results of figs. 1a and 2a do
not show the usual ordering g11 > g12 > g22 of the principal peak heights of the gαβ(r). Such
a monotonic increase of the peak heights with increasing coupling strength has been observed,
e.g., in three-dimensional binary dispersions of neutral and charged colloidal spheres [7].

Unlike fig. 1a, there is a peculiar feature in the radial distribution functions of the second
system, namely the splitting of the primary peak of g11(r) into two peaks. This peak-splitting
of the 1-1 pair distribution function arises from the stronger magnetic coupling of both com-
ponents, in combination with the large interaction asymmetry (Γ1/Γ1)2 ≈ 102 and the specific
values of the partial number densities. The twin peaks of nearly equal height appear in the
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Fig. 2 – Binary suspension with system parameters B = 2.95 mT, n = n1 + n2 = 2.31 · 10−3µm−2,
n1/n2 = 0.313 and same magnetic susceptibilities and particle radii as in fig. 1. (a) Partial radial
distribution functions, gαβ(r), vs. reduced distance r/r0. (b) BD simulation results for the reduced
tracer-diffusion function, Dα(t), vs. reduced time t/τ1.

g11(r) of fig. 2a since there are two concurring sets of configurations of nearly equal statis-
tical weight: the innermost next-neighbor shell formed around a 1-particle, which includes
1-particles as characterised by the first peak in g11(r), contains a larger fraction of 2-particles
than the more distant second subshell, characterised by the second peak in g11(r). This is
consistent with the fact that the second primary minimum of g12(r), and the second primary
maximum of g22(r) are located close to the second maximum of g11(r). There is nearly quan-
titative agreement between the computer simulation and the experimental gαβ(r), despite the
strong interaction asymmetries. The remaining differences in the gαβ(r) can be attributed to
remaining statistical errors in the video imaging and simulation data evaluation. Moreover,
there might be significant polydispersity in the magnetic moments of the 2-particles whose
distribution is unknown and thus not included in the BD simulations.

The dipolar magnetic pair potential in eq. (1) contains no intrinsic length scale. Provided
the magnetic field is so strong that the particles do not experience their physical hard cores,
r0 = n−1/2 is the only physically relevant static length scale. It follows that magnetic Q2D
mixtures with identical sets of coupling amplitudes {Γα} are statistically equivalent, i.e. they
have identical gαβ(r) as functions of reduced distance r/r0. An analogous conclusion can be
drawn for the dynamics as described by the overdamped Langevin equation, eq. (2): without
HI, i.e. when Dij = D0,f

i δij1, systems of equal coupling amplitudes and equal sets of par-
ticle size ratios {aα/a1} are dynamically equivalent, i.e. they have identical reduced tracer
diffusion functions

Dα(t) =
Wα(t)

tD0,f
α

(5)

as functions of reduced time t/τα, with τα = r2
0/D0,f

α . With far-field HI included according to
eqs. (3) and (4), there is the more stringent condition of equal sets of size ratios {aα/r0} to
enforce statistical equivalence. Here Wα(t) =

〈
[Rα(t) − Rα(0)]2

〉
/4 is the two-dimensional

mean squared displacement of α-type particles.
The systems in figs. 1 and 2 are obviously far from being stochastically equivalent due

to the different values for Γα, although the size ratio a1/a2 is the same for both cases. The
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Fig. 3 – BD results of Dα(t) vs. τα for a symmetric binary mixture with system parameters Γ1 =
Γ2 = 8, a1 = 0.15 r0, a2 = a1/2, and n1 = n2.

occurrence of several characteristic lengths, i.e. {aα} and r0, in colloidal mixtures renders
their dynamics more complicated than in the one-component case. For mixtures, there is
no simple static and dynamic scaling behaviour as observed in one-component dispersions of
strongly repelling particles [3, 4, 10, 11]. As a consequence the simple freezing criteria known
for one-component systems do not apply to colloidal mixtures.

BD simulation results with and without HI for the reduced tracer-diffusion functions,
Dα(t), of both systems are shown in figs. 1b and 2b. Figure 1b also includes experimental re-
sults for the Dα(t). In the definition of Dα(t) (cf. eq. (5)) a trivial particle size dependence of
the partial mean-squared displacements Wα through the D0,f

α has been divided out. The signif-
icant hydrodynamic enhancement of tracer-diffusion is clearly observed for both components.
It is interesting to see that the hydrodynamic enhancement of the tracer-diffusion function,
D1(t), of the more strongly interacting particles is much stronger than for the function, D2(t),
of the more weakly interacting component. The strong dependence of the diffusion enhance-
ment on the strength of the magnetic moments of the particles is not shared by monodisperse
systems. For the latter, the hydrodynamic increase in D(t) is only weakly dependent on the
coupling parameter Γ (cf. ref. [2]). The experimental values of Dα(t) are, for larger corre-
lations times t, somewhat smaller than the BD results without HI. This observation holds
true also for the monodisperse case. It is probably due to our approximate far-field treatment
of the diffusivity matrix Dij(RN ). With increasing concentration and decreasing coupling,
higher-order terms in the multipole expansion of Dij(RN ) come into play which have the
tendency to reduce the diffusion enhancement originating from the Rotne-Prager contribution
to the diffusivity tensors. As seen, the BD results with HI for the difference |D1(t)−D2(t)| of
strongly and weakly magnetic particles are quite close to the experimental ones. In contrast,
the difference between the D1(t) and D2(t) without HI is typically twice as large as with HI
(cf. figs. 1b and 2b). As can be expected, the tracer-diffusion function D1(t) of the stronger
magnetic particles decays initially much faster than D2(t). The fast decay of D1(t) compared
to D2(t) becomes more visible when each of the two Dα(t) is plotted vs. its own reduced
time t/τα (cf. the inset of fig. 1b), thus correcting for the larger size and Stokesian friction
of component 1-particles. There are unfortunately no experimental data available to compare
the computer simulation results in fig. 2b. However, similar good agreement between BD



M. Kollmann et al.: Quasi–two-dimensional dispersions of magnetic colloids 925

simulation and experiment can be expected as for the system discussed in fig. 1.
Having discussed binary systems of strong interaction asymmetry, we explore finally the op-

posite case of interacting monodisperse mixtures. In fig. 3, we show BD results with/without
HI of Dα(t) vs. τα for a binary mixture, where both components are of same number density
and magnetic coupling strength. The only difference is that the 1-particles are twice as large
as the 2-particles (i.e., D0,f

1 = 0.5D0,f
2 ). Whereas g11(r) = g12(r) = g22(r), the D1(t) of

the larger and less mobile 1-particles decays more slowly towards a substantally larger long-
time limit D1(∞) > D2(∞). The present system shows a remarkably strong hydrodynamic
enhancement of tracer-diffusion. To conclude, we have investigated the influence of strong in-
teraction asymmetry, particle size effects and hydrodynamic interaction effects on the statics
and dynmamics of binary Q2D dispersions. We have shown that the BD results are in good
accord with experimental data.
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[10] Löwen H., Palberg T. and Simon R. G., Phys. Rev. Lett., 70 (1993) 1557.
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