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Abstract
The elasticity of continuous media with topological defects is described
naturally by differential geometry, since it relates metric to strain. We construct
a geometrical field theory, identifying disclinations, dislocations and extra-
matter defects with the curvature, torsion and nonmetricity tensors, respectively.
Connection and metric are given explicitly in the presence of dislocations and
extra-matter. The density of extra-matter is a scalar source of isotropic strain,
described by a local length scale or gauge. The logarithm of the gauge is
related to the density of extra-matter by a Poisson equation. The corresponding
integral equation, similar to Gauss’ law in electrostatics, measures the amount
of extra-matter contained inside a contour.

PACS numbers: 61.72.−y, 46.05.+b, 02.40.Yy

1. Introduction

Elasticity theory studies the mechanics of solids, described as continuous media. The
deformations of the material and the cohesive forces which hold the structure together as
an integral unit, are described by strain and stress tensors, respectively (see, e.g., [1]).

In classical elasticity theory, one assumes that strains are small, that the constitutive
equations which relate stress and strain tensors are linear and that there are no topological
defects. But real solids deform plastically, i.e. permanently, and the necessary yield stress is
much weaker than the classical theory’s estimate. The concept of dislocation was introduced
to account for this discrepancy [2–4]. Dislocations were also shown to be directly responsible
for work-hardening, etc (see, e.g., [5–7]).

Dislocations are topological defects. Topological defects can be defined as a
generalization of the theorems of Gauss and Ampère in electromagnetism, and of Burgers
in elasticity [8–10]. The integral of a field (electric, magnetic or deformation) over a closed
contour away from the defect (charge, current or dislocation line), is a signature of this defect,
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Figure 1. Venn diagram showing that various geometries are defined by the fundamental tensors,
R (curvature), T (torsion) and Q (associated with extra-matter). 1: realm of elementary dislocation
theory. 3: Riemannian geometry. 4: Euclidean geometry. 2: an example of conformal geometry
[17].

independent of the shape or size of the contour which surrounds it. The integral is zero if no
defect is enclosed. Examples of topological defects are dislocations in crystals, disclinations
in liquid crystals, magnetic flux lines in type II superconductors and vortices in superfluid
helium 4.

Dislocations and disclinations have been introduced in elasticity theory through the
methods of differential geometry by Kondo [11], Bilby et al [12] and Kröner [13–16].
See [17–20] for reviews, and sections 3 and 5 of this paper.

But dislocations and disclinations were introduced one after the other, and in an ad hoc
fashion, leaving open several questions: Are there any other topological defects? Can they
coexist? Why are disclinations absent in three-dimensional crystals [6]? Do they survive in
amorphous solids where there is no lattice to dislocate [21, 22]? Kröner set the technologically
important problem of the coexistence of dislocation lines with impurities or inclusions, and of
the pinning of the former by the latter [13]. He showed that the latter were also topological
defects, described by a third fundamental tensor, which he called the nonmetricity or Q-tensor.
Figure 1 shows the various geometries and topological defects defined by the nonvanishing
fundamental tensors R, T and Q. Region 1, R = 0, Q = 0, is the realm of the classical
dislocation theory. Region 3, T = 0, Q = 0, is Riemannian geometry. Region 4, R = 0,
T = 0, Q = 0, is Euclidean geometry, elasticity theory without defects. Region 2, with R = 0,
T = 0 but Q �= 0 deserves more attention. We will discuss this geometry and construct
explicitly the appropriate connection.

Weyl’s gauge (‘calibration’) theory [23–25] is, in fact, an example of the region T = 0 with
nonmetricity and curvature. Some solids may be characterized by a local length scale or gauge:
for example, an inclusion made of a material with a thermal expansion coefficient different
from that of the matrix in which it is embedded [13]. Another example is a material with
ferroelastic inclusions, where a spontaneous strain may develop below the Curie temperature
[26]. Conformal crystals, which constitute an example of extra-matter, will be discussed in
section 8.

Section 2 of this paper reviews the geometry of elastic continua. Section 3 introduces
topological defects from a physical point of view, starting with the dislocation, which is
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Figure 2. Reference states of an elastic material (left: natural state, right: actual state) and the
local mapping between them.

altogether the most common and the most important topological defect technologically.
Sections 4 and 6 treat the cases where only one type of defect is present, disclinations and
extra-matter, respectively. Section 5, on the differential geometry of topological defects, is
the mathematical counterpart of section 3. Sections 6 and 7 contain the main results of this
paper, the evaluation of extra-matter enclosed in a contour, and the Poisson equation relating
the gauge to its source, the density of extra-matter.

2. The elastic continuum: geometry and strain

The elastic continuum can be described by differential geometry, as a mapping between two
states of the material, the actual state and a reference state, each characterized by its own set
of coordinates (figure 2).

The actual, deformed state of the body, is described by holonomic, Euler coordinates xm,
labelled by Latin indices m = 1, 2, 3.

The local, relaxed state of the material is characterized by nonholonomic (nonintegrable)
Lagrange coordinates dXα , labelled by Greek indices α = 1, 2, 3. This relaxed state is what
Kröner [14] calls the natural state. It is obtained from the actual, deformed state when one
relaxes the elastic strain. Alternatively, the natural state is obtained from a perfect lattice (the
ideal state) by plastic deformation (e.g. Volterra construction).

The mapping (Jacobian) matrix φα
m from actual to natural states,

dXα = φα
m dxm (1)

contains the physical information. It describes the local geometry of the material. Note that
φα
m = ∂Xα/∂xm is a gradient only if the coordinates dXα are holonomic. (The summation

over repeated sub- and superscript indices is implicit by convention.)
The elastic strain tensor emn is obtained by comparing the distance dl′ between two points

separated by an infinitesimal vector dxm in the elastically deformed state, with the distance dl
between the same points in the relaxed state, that is, if one had allowed the elastic strain to go
to zero

dl′2 = dxmdxm = gαβ dXαdXβ dl2 = gmndxmdxn = dXαdXα. (2)

These equations define the metric gmn of the relaxed state described by the Euler coordinates
xm and the metric gαβ of the actual state described by the Lagrange coordinates dXα . Then,

dl′2 − dl2 = 2emn dxmdxn = 2EαβdXαdXβ

defines the elastic strain tensor

emn = 1
2 (δmn − gmn). (3)
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Both emn and gmn are symmetric in their indices. Relation (3), is general and fundamental.
Since, from (1)

gmn = δαβφ
α
mφ

β
n (4)

equation (3) relates the physical strain to the geometrical mapping (1).

3. Topological defects in an elastic continuum

Consider first the construction of the Burgers vector bα of a dislocation (see figure 2). Let C
be a closed contour in the actual state of the material, characterized by the coordinates xm. Its
image C′ in the relaxed state, characterized by the coordinates dXα , is not closed, the missing
amount being the Burgers vector

−bα =
∫
C′

dXα =
∮
C

φα
n dxn =

∫ ∫
T α
mn dxm ∧ dxn (5)

where the dislocation density

T α
mn = ∂mφ

α
n − ∂nφ

α
m (6)

has been obtained through Stokes formula. T α
mn dxm ∧ dxn is a vector-valued two-form in xm.

Note that the Burgers vector is a property of the whole contour in the natural state of the
material. It expresses anholonomy, and is the same, wherever contour C′ starts.

The Burgers vector could also be expressed in the actual state, through the use of mapping
(1), but only if neither its orientation, nor its length depends on its position. This is only the
case if the curvature and nonmetricity tensors vanish inside contour C. If the former condition
holds, the material is said to have distant parallelism, or to be free of disclinations. Then, the
dislocation density is given by the torsion tensor

T s
mn = (φ−1)sαT

α
mn = �s

nm − �s
mn (7)

in terms of the connection

�s
nm = (φ−1)sα∂mφ

α
n . (8)

Disclinations do not occur in crystalline three-dimensional materials. They cost too much
elastic energy. Disclination-free crystals have distant parallelism or long-range orientational
order. This property can be expressed mathematically through the concept of parallel transport.
Parallel transport of a vector vs between two points separated by dxm along the path is given
by the formal expression

δvs = −�s
pmv

pdxm.

Parallel transport of vs over an arc of a geodesic implies that its covariant derivative

Dpv
s = ∂pv

s + �s
mpv

m

vanishes.
In case of long-range order, any vector vs returns the same orientation after being

transported over an arbitrary closed circuit. The closed circuit decomposed into elementary
arcs of geodesics, thus∮

δvs = −
∮

�s
pnv

p dxn = −
∫ ∫ [

∂m
(
�s
pnv

p
) − ∂n

(
�s
pmv

p
)]

dxm ∧ dxn

= −
∫ ∫

Rs
pmnv

p dxm ∧ dxn (9)
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where the curvature tensor,

Rs
pmn = ∂m�

s
pn − ∂n�

s
pm + �s

jm�
j
pn − �s

jn�
j
pm (10)

measures the density of disclinations. Equation (9) is valid for any vector and any arbitrary
closed circuit. Thus Rs

pmn = 0 means distant parallelism or absence of disclinations.
With the pure gauge connection (8), the curvature tensor vanishes. The geometry is flat

and the material has distant parallelism.
Here the components s, p of the curvature tensor are given in the actual state of the system.

But they could as well be given in the natural state, α, β. Only the contour elements dxm, dxn

are always in the actual state of the material.
The nonmetricity tensor or Q-tensor, is defined as the covariant derivative of the metric

[13]

Qqsp = Dpgqs = ∂pgqs − �t
qpgts − �t

spqqt . (11)

The corresponding defect is called extra-matter. If the Q-tensor induces strain in the material,
it is the scalar density of extra-matter ρ(x) which is the source of the strain field (cf equation
(37) below). If Dpgqs = 0 (Ricci lemma), the connection is called metric compatible [27].

The pure gauge connection (8) is compatible with the metric (4), Q = 0. Here, with the
connection (8) and metric (4) defined in terms of the same mapping φα

n , we have an example
illustrating region 1 of figure 1, where two of the three fundamental tensors vanish, Q = 0,
R = 0.

4. Riemannian geometry T = 0, Q = 0

When the torsion vanishes everywhere, the Lagrange coordinates dXα are holonomic. The
connection �0

spn = gst�
0t
pn = �0

snp is symmetric. If one makes the further assumption that
Qqsp = Dpgqs = 0, then the connection can be given explicitly in terms of the metric, as the
Christoffel symbol

�0
spn = 1

2 (∂ngsp + ∂pgsn − ∂sgpn).

This situation is region 3 of figure 1.

5. Differential geometry of topological defects

In this section, we discuss the general case of an elastic continuum with topological defects,
disclinations, dislocations and extra-matter, in the formalism of differential geometry.

The metric is defined in terms of the mapping φα
m between relaxed and deformed states

of matter, by equation (4).
Using the notation of differential forms (see [28–31] and the appendix), we can write

formally the two-forms R, T and the one-form Q in terms of the connection (�) and the
soldering (ν) one-forms as

Rs
p = d�s

p + �s
t ∧ �t

p ≡ D�s
p (12)

T s = dνs + �s
m ∧ νm ≡ Dνs (13)

Qqs = dgqs − �t
qgts − �t

sgtq ≡ Dgqs (14)

where the operator D is the covariant exterior derivative and

Rs
p = 1

2R
s
pmndxm ∧ dxn (15)

T s = 1
2T

s
mndxm ∧ dxn (16)
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Qqs = Qqsndxn (17)

�s
q = �s

qndxn (18)

νs = νsndxn. (19)

The metric gts is a zero-form. The soldering form νs is necessary to define the torsion
two-form in the presence of extra-matter. Its physical role as an integrating factor will be
justified shortly (section 6).

In ordinary tensor notation, the curvature tensor Rs
pmn is given by (10)

Rs
pmn = ∂m�

s
pn − ∂n�

s
pm + �s

jm�
j
pn − �s

jn�
j
pm.

Indeed, from (12) and (15),
1
2R

s
pmndxm ∧ dxn = d

(
�s
pndxn

)
+ �s

jmdxm ∧ �j
pndxn

= ∂m�
s
pndxm ∧ dxn + �s

jm�
j
pndxm ∧ dxn

= 1
2

(
∂m�

s
pn − ∂n�

s
pm + �s

jm�
j
pn − �s

jn�
j
pm

)
dxm ∧ dxn.

Similarly, the torsion tensor is

T s
mn = ∂mν

s
n − ∂nν

s
m + �s

jmν
j
n − �s

jnν
j
m (20)

a generalization of equation (7); when νsn takes uniform values (in the actual state), dνs = 0
and equation (20) is identical to equation (7) up to a global transformation of coordinates.

Indeed, from (13) and (16),
1
2T

s
mndxm ∧ dxn = d

(
νsndxn

)
+ �s

jmdxm ∧ νjndxn

= (
∂mν

s
n

)
dxm ∧ dxn + �s

jmν
j
ndxm ∧ dxn

= 1
2

(
∂mν

s
n − ∂nν

s
m + �s

jmν
j
n − �s

jnν
j
m

)
dxm ∧ dxn.

The nonmetricity tensor reads

Qqsn = ∂ngqs − �t
qngts − �t

sngtq . (21)

Indeed, from (14) and (17),

Qqsndxn = dgqs − �t
qndxngts − �t

sndxngtq = ∂ngqsdxn − �t
qngtsdx

n − �t
sngtqdxn.

Conservation laws for the densities of topological defects are expressed in terms of
Bianchi’s identities. Their derivation is less cumbersome in the formalism of differential
forms than in tensor notation.

Conservation of curvature (Bianchi’s identity proper) reads [27]

DRs
p = dRs

p + �s
m ∧ Rm

p − Rs
m ∧ �m

p = 0 (22)

since from equation (16)

dRs
p = d�s

t ∧ �t
p − �s

t ∧ d�t
p = (

Rs
t − �s

n ∧ �n
t

) ∧ �t
p − �s

t ∧ (
Rt
p − �t

n ∧ �n
p

)
(23)

thus

dRs
p − Rs

t ∧ �t
p + �s

t ∧ Rt
p = 0.

Disclination lines form closed loops.
The torsion identity is

DT s = dT s + �s
m ∧ T m = Rs

n ∧ νn (24)

since from equations (13) and (16)

dT s = d�s
m ∧ νm − �s

m ∧ dνm = d�s
m ∧ νm − �s

m ∧ (
T m − �m

n ∧ νn
)
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thus

dT s + �s
m ∧ T m = (

d�s
n + �s

m ∧ �m
n

) ∧ νn = Rs
n ∧ νn.

Recall that dd = 0 (Poincaré’s identity). Curvature is the source of torsion and dislocation
lines may terminate on disclinations.

The third identity relates Q- and curvature tensors:

DQqs = −Rt
qgts − Rt

sgtq (25)

since from equations (14) and (17),

−dQqs = d
(
�t
qgts

)
+ d

(
�t
sgtq

)
= d�t

qgts − �t
q ∧ dgts + d�t

sgtq − �t
s ∧ dgtq

= d�t
qgts − �t

q ∧ (
Qts + �m

t gms + �m
s gmt

)
+ d�t

sgtq − �t
s ∧ (

Qtq + �m
t gmq + �m

q gmt
)

thus

−dQqs + �t
q ∧ Qts + �t

s ∧Qtq = (
d�t

q − �n
q ∧ �t

n

)
gts +

(
d�t

s − �n
q ∧ �t

n

)
gtq .

If the curvature is zero, the three Bianchi identities read simply

DRs
p = 0 DT s = 0 DQqs = 0.

6. Extra-matter only, R = 0, T = 0

Let us now find the connection in the case R = 0, T = 0. A material free of disclinations has
long-range orientational order and zero curvature. The connection is pure gauge in terms of
an arbitrary mapping A, that is,

�s
qp = (A−1)sα∂pA

α
q (26)

where (A−1)sαA
α
q = δsq . We shall use the shortened notation (A−1)sα = As

α .
For T = 0, it is sufficient that the physical mapping φα

q is a gradient φα
q = ∂Xα/∂xq .

It remains to relate the physical mapping φα
q , which defines the metric (equation (4)), to the

mapping Aα
q , which defines the connection. This is done through the soldering tensor νmn as

φα
n = Aα

mν
m
n . (27)

Equation (27) is justified by noting that, from equations (20) and (26),

T s
pn = ∂pν

s
n − ∂nν

s
p + �s

mpν
m
n − �s

mnν
m
p

= ∂pν
s
n + A−1s

α

(
∂pA

α
m

)
νmn − ∂nν

s
p − A−1s

α

(
∂nA

α
m

)
νmp

= A−1s
α

[
∂p

(
Aα
mν

m
n

) − ∂n
(
Aα
mν

m
p

)] = A−1s
αT

α
pn. (28)

Thus, the torsion tensor is identically zero if the mapping φα
n = Aα

mν
m
n is a gradient. Note,

however, that it is the connection mappingA, rather than the full mapping φ, which transforms
the vector-valued torsion T α

mn = ∂mφ
α
n −∂nφ

α
m from the natural state (equation (6)) to the actual

state (equation (28)). The two mappings are related by a local change of coordinates νmn .
The metric can be written as

gpq = δαβφ
α
pφ

β
q = δαβA

α
mν

m
p A

β
s ν

s
q = [

νmp ν
s
q

]
g0
ms

where g0
ms = δαβA

α
mA

β
s and Dtg

0
ms = 0. (The pure gauge connection is compatible with its

own metric.) But Dtgpq = Dt

[
νmp ν

s
qg

0
ms

] �= 0, so that a nonuniform soldering tensor yields a
nonvanishing Q-tensor.
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Let us now construct the soldering tensor explicitly. The mapping φα
q from the actual state

to the natural state contains two pieces of physical information: the orientation of a local frame
and the local scale, or gauge. The orientation is controlled by the map Aα

q , through the choice
of a pure gauge connection (26) which implies zero curvature and long-range orientational
order.

We set, therefore,

φα
q = Aα

q

λ
(29)

where 1/λ(x) is the local scale, or gauge, and the corresponding soldering tensor is

νsn = δsn
/
λ. (30)

We show that this choice separates the effects of torsion and nonmetricity. From the
pure gauge connection (26), we can calculate curvature, torsion and nonmetricity from
equations (10), (20) and (21),

Rs
pmn = 0 (31)

T s
mn = 1

λ

(
φs
α∂mφ

α
n − φs

α∂nφ
α
m

)
(32)

Qqsn = −2∂nλ

λ
gqs . (33)

The torsion (32) vanishes if the mapping is a gradient: φα
m = ∂Xα/∂xm; the natural state

has holonomic coordinates, the geometry is integrable, there is no plastic deformation.
Equation (33) indicates that the Q-tensor does not vanish if the local gauge or scale

1/λ(x) is not uniform. From the point of view of Weyl’s theory gqs = θ(x)g0
qs , with Q0

qsp =
Dpg

0
qs = 0, then

Qqsp = ∂pθ

θ
gqs

and θ(x) = 1/(λ(x))2. Indeed

Dpgqs = ∂p
[
θg0

qs

] − �t
qpθg

0
ts − �t

spθg
0
tq = (∂pθ)g

0
qs + θDpg

0
qs = (∂pθ)g

0
qs = ∂pθ

θ
gqs.

Moreover, given that gqs = δαβφ
α
q φ

β
s = 1/(λ(x))2δαβA

α
qA

β
s , g0

qs = δαβA
α
qA

β
s , the

mapping Aα
q only serves to set up the pure gauge connection. It does not include the gauge

1/(λ(x))2 which describes extra-matter. Indeed Dng
0
qs = ∂ng

0
qs − �t

qng
0
ts − �t

sng
0
tq = 0.

7. Burgers’ vector and nonmetricity scalar

Dislocations are topological defects. Like current lines or charges in electromagnetism, they
can be detected and measured by constructing a Burgers circuit, a closed contour in the actual
state of the material enclosing the dislocation. In the natural state, the image of the Burgers
contour does not close, and the missing element is Burgers’ vector (5)

−bα =
∫ ∫

T α
mndxm ∧ dxn

where

T α
mn = ∂mφ

α
n − ∂nφ

α
m = Aα

s T
s
mn (34)

is the density of dislocations, with values measured in the natural state. This is the correct,
invariant expression, since bα is the measure of the anholonomy (it does not, by definition,
include any elastic distortion), in the absence of disclinations.
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The above formulation can be extended to extra-matter. First, we define

qm = gstQstm = −2∂mλ

λ

∗qab = eabc
√
gqsg

sc (35)

where eabc = e[abc] = 0,±1, is the fully antisymmetric pseudo-tensor in flat space and
g = det(gij ). Then the amountN = ∫ ∫ ∫

ρ
√
g dx1 ∧ dx2 ∧ dx3 of extra-matter in the volume

V is the flux of ∗qab across the surface ∂V bounding V , namely,

N =
∮

1
2

∗qab dxa ∧ dxb

=
∫ ∫ ∫

1
2∂c

∗qab dxc ∧ dxa ∧ dxb

=
∫ ∫ ∫

1
2∂c

(
eabm

√
gqsg

sm
)

dxc ∧ dxa ∧ dxb

=
∫ ∫ ∫

1
2∂c

(√
gqsg

sm
)
eabme

abc dx1 ∧ dx2 ∧ dx3

=
∫ ∫ ∫

∂c
(√

gqsg
sm

)
δcm dx1 ∧ dx2 ∧ dx3

=
∫ ∫ ∫

−2∂m
(√

ggms∂s lnλ
)

dx1 ∧ dx2 ∧ dx3 (36)

so that ρ(x), the density of extra-matter, obeys Poisson’s equation in curved space

1√
g
∂m

(√
ggms∂s ln λ−2

) = +2(lnλ−2) = ρ(x) (37)

where +2 is the Laplacian in curved space (Beltrami’s operator).

Remark: It is ρ(x), and not the Q-tensor, which is the density of extra-matter, unlike R and
T which are the densities of disclinations and dislocations, respectively. If one looks for an
analogy with electrostatics, lnλ−2 corresponds to the scalar potential, qm to the electric field
and ρ(x) to the density of electric charge; N is the total charge enclosed.

8. Example: conformal crystal, phyllotaxis

The structure of many compound flowers (compositae: daisy, sunflower, pinecone, etc) can
be described as a two-dimensional, conformal mapping of a strip of a triangular lattice in the
complex plane z = x + iy into an annulus in the complex plane w = u + iv [32–34]:

w = exp(bz)

that is,

u = exp(b1x − b2y) cos(b2x + b1y) v = exp(b1x − b2y) sin(b2x + b1y) (38)

where w are the coordinates of the actual state of the material, z those of the natural state, the
triangular lattice, and b = b1 + ib2 is a complex number which describes the inclination of the
strip [32, 33] (figure 3). The lattice in w is still triangular but deformed. Notably the lattice
lines become spirals, recognizable in sunflowers, etc.

The mapping (Jacobian) matrix φ−1p
α = dw/dz from the natural to the actual states is

φ−11
1 = ∂u

∂x
= b1u− b2v = ∂v

∂y
= φ−12

2

(39)
φ−11

2 = ∂u

∂y
= −b2u − b1v = −∂v

∂x
= −φ−12

1.
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Figure 3. Phyllotaxis: the conformal mapping w = exp(bz) of a strip in the natural state (here,
square lattice in (z) with periodic boundary conditions d1 = d2) into an annulus in the actual state
(w), with b = 2π/(21 + i13). The extra-matter lies inside the inner circle of the annulus (called
the meristem), which is the image of the left boundary of the strip in (z). The distortion which it
causes is measured by the Q-tensor. The parastichies (images of reticular lines) are equiangular
(logarithmic) spirals (from [32], with permission).
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The Cauchy–Riemann equations are satisfied. Thus from equation (4),

gpq = |b2w2|δpq gpq = 1

|b2w2|δpq. (40)

Since the mapping is conformal, there are neither disclinations nor dislocations (the
mapping (39) is a gradient), except on the domain boundaries. However, the density of points
in the w plane decreases radially outwards as 1/(|dw/dz|2) = 1/(|bw|2), so that |bw| is
a natural length scale, and the size of the floret grows linearly with its distance from the
meristem. There is, therefore, a nonvanishing Q-tensor distributed in the w plane (see figure 3
and [33, 34]).

Let us construct the metric tensor g0
qs = gqs/θ(w) (section 5). We may choose

λ = |bw|1−σ θ = 1

λ2
= |bw|−2+2σ

with arbitrary σ for now. Then,

g0
qs = λ2gqs = |bw|−2σ δqs Qqsp = −2(1 − σ)∂p[ln(|bw|)]gqs.

The natural and physical choice is σ = 0. Then the gauge λ = |bw| is indeed a length
scale. θ = 1/(|bw|2) is the density of florets (points in the w plane); g0

qs = δqs is a metric
without length scale, and the mapping Aα

p has determinant 1, so that the connection is also
without length scale.

To find the density of extra-matter in two-dimensional space, we define
∗qa = eam

√
gqsg

sm

where eab = e[ab] = 0,±1, is the fully antisymmetric pseudo-tensor in flat two-dimensional
space. Then, the amount N of extra-matter in two dimensions is

N =
∮

∗qa dxa

=
∮ (

eam
√
gqsg

sm
)

dxa

=
∫ ∫

∂b
(
eam

√
gqsg

sm
)

dxb ∧ dxa

=
∫ ∫

∂b
(√

gqsg
sm

)
eame

ba dx1 ∧ dx2

=
∫ ∫

−∂m
(√

gqsg
sm

)
dx1 ∧ dx2

=
∫ ∫

2∂m
(√

ggms∂s ln λ
)

dx1 ∧ dx2.

For our conformal crystal, the amount of extra-matter is

N =
∫ ∫

2∂s∂s(ln λ) du dv

=
∫ ∫

(1 − σ)∂s∂s ln(u2 + v2) du dv

=
∫ ∫

4π(1 − σ)δ(u)δ(v) du dv

= 4π(1 − σ)

so the density of extra-matter reads

ρ(u, v) = 4π(1 − σ)δ(u)δ(v).

For σ = 0, ρ(u, v) = 4πδ(u)δ(v). In figure 3, the extra-matter is located inside the inner
circle of the annulus, the meristem of the flower.
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9. Conclusions

We have constructed a field theory of defects, identifying disclinations, dislocations and extra-
matter with their fundamental tensors, curvature, torsion and nonmetricity, respectively. We
have calculated explicitly the deformations and the connection when there is only extra-matter
(the torsion and curvature tensors are explicitly zero), and when there are extra-matter and
dislocations (the curvature tensor is explicitly zero).

We showed that extra-matter is a topological defect. Its density is a source of nonmetricity
strain (Q-tensor), expressed through a Poisson equation. The amount of extra-matter can be
obtained by an integral formula over a closed contour, just like disclinations or dislocations in
elasticity, or charges and currents in electromagnetism.

The torsion tensor vanishes, and there are no dislocations, if the physical mapping φα
n

between actual and natural states is a gradient. The curvature tensor vanishes, and there are
no disclinations, if the connection, expressed in terms of some arbitrary mapping Aα

m, is pure
gauge (equation (26)). If φα

n = Aα
n , the Q-tensor vanishes and there is no extra-matter. The

extra-matter is given by the soldering tensor ν relating φ to A, φα
n = Aα

mν
m
n . The tensor ν

serves as an integrating factor for A if there are no dislocations.
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Appendix. Differential forms

In terms of local coordinates, the set {∂/∂xm} with m = 1, 2, . . . , n forms a basis for the
tangent space T of an n-dimensional manifold. The tangent space is a linear, vector space.

The mappingω: T → R (R is the set of real numbers) is a linear mapping if ω(av +bu) =
aω(v) + bω(u) for all a, b ∈ R and u, v ∈ T . The set L(T ,R) of all linear mappings from
T to R becomes a linear space over R when addition and scalar multiplication are defined by
(ω1 + ω2)(u) = ω1(u) + ω2(u) and (aω)(u) = aω(u). The set L(T ,R) is called the dual of
tangent space T, or cotangent space, and is denoted by T ∗. ω(u) is often denoted as 〈ω, u〉.

The set {dxm} with m = 1, 2, . . . , n, defined by 〈dxm, ∂/∂xn〉 = δmn , is a basis for the
cotangent space. A one-form, an arbitrary element of cotangent space, can be written as

ω = apdxp.

Tensors of type (a, b) are constructed by taking a elements from tangent space and b
elements from cotangent space. Antisymmetric tensors of type (0, r) are called r-forms, and
written

ω = Tm1,...,mr
dxm1 ∧ · · · ∧ dxmr .

The symbol ∧ denotes the wedge product and is defined by

dxm1 ∧ · · · ∧ dxmr = 0 if any two basic one-forms dxm1 , . . . , dxmr are equal;
dxm1 ∧ · · · ∧ dxmr changes sign if any two dxm1, . . . , dxmr are interchanged;
dxm1 ∧ · · · ∧ dxmr is linear in any basic one-form dxm1, . . . , dxmr separately.
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Given the r-form ω = Tm1,...,mr
dxm1 ∧ · · · ∧ dxmr , its exterior derivative is written as dω

and is defined as

dω = ∂Tm1,...,mr

∂xmr+1
dxmr+1 ∧ dxm1 ∧ · · · ∧ dxmr .

It follows that, for any form,

d2ω = 0. (41)

Moreover, for any q-form ξ and r-form ω,

d(ξ ∧ ω) = dξ ∧ ω + (−1)qξ ∧ dω. (42)
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