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Abstract

This article reviews the physics of colloidal dispersions in nematic liquid crystals as a novel challenging
type of soft matter. We 0rst investigate the nematic environment of one particle with a radial anchoring of
the director at its surface. Three possible structures are identi0ed and discussed in detail; the dipole, the
Saturn-ring and the surface-ring con0guration. Secondly, we address dipolar and quadrupolar two-particle
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interactions with the help of a phenomenological theory. Thirdly, we calculate the anisotropic Stokes drag
of a particle in a nematic environment which determines the Brownian motion of particles via the Stokes–
Einstein relation. We then turn our interest towards colloidal dispersions in complex geometries where we
identify the dipolar con0guration and study its formation. Finally, we demonstrate that surface-induced
nematic order above the nematic-isotropic phase transition results in a strongly attractive but short-range
two-particle interaction. Its strength can be controlled by temperature and thereby induce >occulation in
an otherwise stabilized dispersion. c© 2001 Elsevier Science B.V. All rights reserved.

PACS: 77.84.Nh; 61.30.Jf; 61.30.Cz; 82.70.Dd

Keywords: Colloidal dispersions; Nematic liquid crystals; Topological defects; Two-particle interactions; Stokes drag;
Complex geometries; Flocculation
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1. Motivation and contents

Dispersions of particles in a host medium are part of our everyday life and an impor-
tant state of matter for fundamental research. One distinguishes between emulsions, where
surfactant-coated liquid droplets are dispersed in a >uid environment, colloidal suspensions,
where the particles are solid, and aerosols, with >uid or solid particles >oating in a gaseous
phase. Colloidal dispersions, whose particle size ranges from 10 nm to 10 �m, appear in food,
with milk being the best-known fat-in-water emulsion, in drugs, cosmetics, paints, and ink. As
such, they are of considerable technological importance. In nature, one is confronted by both the
bothering and appealing side of fog, and one can look at the beautiful blue-greenish color of berg
lakes in the Canadian Rockies, caused by light scattering from a 0ne dispersion of stone >ower
in water. The best-known example of an ordered colloid, a colloidal crystal, is the opal, formed
from a uniform array of silica spheres compressed and fused over geological timescales. In
fundamental research, colloidal dispersions are ideal systems to study Brownian motion and hy-
drodynamic interactions of suspended particles [202,110]. They provide model systems [134,89]
for probing our understanding of melting and boiling, and for checking the Kosterlitz–Thouless–
Halperin–Nelson–Young transition in two-dimensional systems [233,238,23]. The main interest
in colloidal dispersions certainly focusses on the problem how to prevent the particles from
>occulation, as stated by Russel, Saville and Schowalter [202]:

Since all characteristics of colloidal systems change markedly in the transition from the
dispersed to the aggregated state, the question of stability occupies a central position in
colloid science.

There exists a whole zoo of interactions between the particles whose delicate balance deter-
mines the stability of a colloidal dispersion. Besides the conventional van der Waals, screened
Coulombic, and steric interactions [202], >uctuation-induced Casimir forces (e.g., in binary >u-
ids close to the critical point [116,157]) and depletion forces in binary mixtures of small and
large particles [202,56,55,196] have attracted a lot of interest. Entropic e9ects play a major role
in the three latter types of interactions. In a subtle e9ect, they also lead to an attraction between
like-charged macroions [109,45,125] by Coulomb depletion [4].
The present work focusses on the interesting question of how particles behave when they

are dispersed in a nematic solvent. In a nematic liquid crystal, rodlike organic molecules align
on average along a unit vector n, called director. The energetic ground state is a uniform
director 0eld throughout space. Due to the anchoring of the molecules at the surface of each
particle, the surrounding director 0eld is elastically distorted which induces additional long-range
two-particle interactions. They are of dipolar or quadrupolar type, depending on the symmetry
of the director con0guration around a single particle [22,190,200,182,140]. The forces were
con0rmed by recent experiments in inverted nematic emulsions [182,179,183]. On the other
hand, close to the suspended particles, topological point and line defects in the orientational
order occur which strongly determine their behavior. For example, point defects give rise to a
short-range repulsion [182,183]. Colloidal dispersions in a nematic environment are therefore
an ideal laboratory for studying the statics and dynamics of topological defects.
Before we deal with the physics of such dispersions in the following, we review the phe-

nomenological description of the nematic phase in Section 2. We introduce the total free energy
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and the Ericksen–Leslie equations governing, respectively, the statics and dynamics of the di-
rector 0eld. We also provide the basic knowledge of topological point and line defects in the
orientational order necessary for the understanding of di9erent director con0gurations around a
single spherical particle. In Section 3 we review the work performed on colloidal dispersions in
nematic liquid crystals relating it to recent developments in the liquid crystal 0eld. Furthermore,
with nematic emulsions, we introduce one particular model system which motivated the present
investigation. In Section 4 we investigate, what I consider the paradigm for the understanding
of nematic colloidal dispersions, i.e., the static properties of one particle. We concentrate on
a radial anchoring of the director at its surface, for which we identify three di9erent types
of nematic environment; the dipole con0guration, where the particle and a companion point
defect form a tightly bound topological dipole, the Saturn-ring con0guration, where the particle
is surrounded by a ring defect and a structure with an equatorial surface ring, which appears
for decreasing anchoring strength of the molecules at the surface of the particle. In Section 5
we address colloidal interactions with the help of a phenomenological theory and illustrate how
they depend on the overall symmetry of the director con0guration around a single particle.
Then, in Section 6 we calculate the Stokes drag of one particle moving in a nematic environ-
ment. Via the Stokes–Einstein relation, one immediately has access to the di9usion constant
which determines the Brownian motion of spherical objects. In Section 7 we turn our interest
towards colloidal dispersions in complex geometries. In particular, we consider particles, e.g.,
droplets of water, in a large nematic drop. We identify the dipole con0guration and illustrate
possible dynamic e9ects in connection with its formation. Finally, in Section 8 we demonstrate
that surface-induced nematic order above the nematic-isotropic phase transition leads to another
novel colloidal interaction which strongly in>uences the stability of dispersions. It is easily
controlled by temperature and can, e.g., induce >occulation in an otherwise stabilized system.

2. Phenomenological description of nematic liquid crystals

Typical liquid crystalline compounds consist of organic molecules. According to their elon-
gated or disc-like shape one distinguishes between calamatic and discotic liquid crystals. Fig. 1a
presents the molecular structure of the well-studied compound N -(p-methoxybenzylidene)-p-
butylaniline (MBBA). Its approximate length and width are 20 and 5 MA. At suNciently high
temperatures, the liquid crystalline compound behaves like a conventional isotropic liquid; the
molecules do not show any long-range positional and orientational order, as illustrated in the
right box of Fig. 1b for rod-like molecules. Cooling below the clearing point Tc, the liquid
becomes turbid, which indicates a phase transition to the liquid crystalline state. Finally, below
the melting point Tm the system is solid. There exists a wealth of liquid crystalline phases
[29,51,27]. Here we concentrate on the simplest, i.e., the nematic phase, which consists of
non-chiral molecules. Their centers of mass are disordered as in the isotropic liquid, whereas
their main axes align themselves on average parallel to each other, so that they exhibit a
long-range orientational order. The average direction is given by a unit vector n, called Frank
director. However, n merely characterizes an axis in space, e.g., the optical axis of the birefrin-
gent nematic phase. As a result, all physical quantities, which we formulate in the following,
have to be invariant under the inversion of the director (n → −n). From the topological point
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Fig. 1. (a) The compound MBBA. (b) The nematic liquid-crystalline phase below the clearing point Tc. The average
direction of the molecules is indicated by the double arrow {n;−n}.

of view, the order parameter space of the nematic phase is the projective plane P2 = S2=Z2,
i.e., the unit sphere S2 in three dimensions with opposite points identi0ed [226]. Unlike the
magnetization in ferromagnets, the nematic order parameter is not a vector. This statement can
be understood from the following argument. Organic molecules often carry a permanent electric
dipole moment along their main axis but so far no ferroelectric nematic phase with a sponta-
neous polarization has been found. Therefore, the same number of molecules that point into a
certain direction in space also have to point into the opposite direction.
In thermotropic liquid crystals, the phase transitions are controlled by temperature. On the

other hand, increasing the concentration of rod- or disc-like objects in a solvent can lead to
the formation of what is called lyotropic liquid crystalline phases. The objects can be either
large macromolecules, like the famous tobacco mosaic virus [78], or micelles, which form when
amphiphilic molecules are dissolved, e.g., in water.
All directions in the isotropic >uid are equivalent. The phase transition to the nematic state

breaks the continuous rotational symmetry of the isotropic liquid. As a result, domains with
di9erently oriented directors appear like in a ferromagnet. These domains strongly scatter light
and are one reason for the turbidity of the nematic phase. Hydrodynamic Goldstone modes
appear in systems with a broken continuous symmetry [76,27]. They are “massless”, i.e., their
excitation does not cost any energy for vanishing wave number. In the nematic phase, the
Goldstone modes correspond to thermal >uctuations of the director about its equilibrium value.
Such >uctuations of the local optical axis also scatter light very strongly.
In the next four Sections 2.1–2.4 we will lay the basis for an understanding of the static and

dynamical properties of the nematic phase, and we will apply it in the following sections to
nematic colloidal dispersions. Sections 2.1 and 2.2 provide the necessary knowledge for deter-
mining the spatially non-uniform director 0eld in complex geometries (e.g., around particles)
under the in>uence of surfaces and external 0elds and in the presence of topological defects.
Furthermore, with the help of the dynamic theory in Section 2.3, we will calculate the Stokes
drag of a particle in a nematic environment, and we will demonstrate that it is in>uenced by
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the presence of topological defects close to the particle. Finally, in Section 2.4 we will review
the basic knowledge of point and line defects in nematics.

2.1. Free energy

Thermodynamics tells us that a complete knowledge of a system on a macroscopic level
follows from the minimization of an appropriate thermodynamic potential [25]. We use the free
energy, which consists of bulk and surface terms,

Fn = Fel + F24 + FH + FS =
∫
d3r (fel + f24 + fH ) +

∫
dS fS ; (2.1)

and discuss them in order.
The energetic ground state of a nematic liquid crystal is a spatially uniform director 0eld;

any deviation from it costs elastic energy. To describe slowly varying spatial distortions of the
director 0eld n(r), one expands the free energy density into the gradient of n(r), ∇inj, up to
second order, and demands that the energy density obeys the local point symmetry D∞h of the
nematic phase. The point group D∞h contains all the symmetry elements of a cylinder, i.e., all
rotations about an axis parallel to n(r), a mirror plane perpendicular to n(r), and an in0nite
number of two-fold axes also perpendicular to n(r). The result is the Oseen–ZUocher–Frank free
energy density [167,242,79], which consists of two parts,

fel = 1
2[K1(div n)

2 + K2(n ·curl n)2 + K3(n × curl n)2] (2.2)

and

f24 =−K24
2
div(n div n+ n × curl n) ; (2.3)

where K1, K2, K3, and K24 denote, respectively, the splay, twist, bend, and saddle-splay elastic
constants. Fig. 2 illustrates the characteristic deformations of the director 0eld. The splay and
bend distortions can be viewed, respectively, as part of a source or vortex 0eld. In the twist
deformation, the director rotates about an axis perpendicular to itself. In calamatic liquid crystals
one usually 0nds the following relation, K3 ¿ K1¿K2. For example, in the compound pentyl-
cyanobiphenyl (5CB), K1 = 0:42 × 10−6 dyn, K2 = 0:23 × 10−6 dyn, and K3 = 0:53 × 10−6 dyn.
In discotic liquid crystals, the relationship K2¿K1¿K3 is predicted [216,168,221], which is
in good agreement with experiments, where K2 ¿ K1¿K3 is observed [232,103].
The saddle-splay term is a pure divergence. It can be transformed into integrals over all

surfaces of the system,

F24 =−1
2
K24

∫
dS ·(n div n+ n × curl n) ; (2.4)

where it prefers the formation of a saddle (see Fig. 2). A Cauchy relation for K24 follows from
the Maier–Saupe molecular approach [163],

K24 = (K11 + K22)=2 : (2.5)

Exact measurements of K24 are still missing but it is of the order of the bulk elastic constants
K1, K2, and K3 [41,5,40]. There is also the possibility of another surface term with a free
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Fig. 2. Illustration of the characteristic deformations in a nematic liquid crystal: splay, twist, bend, and saddle-splay.

energy density K13 div(n div n), which we will not consider in this work [163,166,9,172,173].
The controversy about it seems to be solved [174].
In the one-constant approximation, K = K1 = K2 = K3, the Frank free energy takes the form

Fel =
K
2

∫
d3r(∇inj)2 + K − K24

2

∫
dS ·(n div n+ n × curl n) : (2.6)

It is often used to obtain a basic understanding of a system without having to deal with e9ects
due to the elastic anisotropy. The bulk term is equivalent to the non-linear sigma model in
statistical 0eld theory [241,27] or the continuum description of the exchange interaction in a
ferromagnet [156].
In nematic liquid crystals we can assume a linear relation between the magnetization M

and an external magnetic 0eld H , M = �H , where � stands for the tensor of the magnetic
susceptibility. The nematic phase represents a uniaxial system, for which the second-rank tensor
� always takes the following form:

�= �⊥1+V�(n ⊗ n) ; (2.7)

1 is the unit tensor, and ⊗ means dyadic product. We have introduced the magnetic anisotropy
V�= �‖ − �⊥. It depends on the two essential magnetic susceptibilities �‖ and �⊥ for magnetic
0elds applied, respectively, parallel or perpendicular to the director. The general expression for
the magnetic free energy density is −H ·�H =2 [123]. A restriction to terms that depend on the
director n yields

fH =−V�
2
[(n ·H)2 −H 2] : (2.8)

In usual nematics V� is positive and typically of the order of 10−7 [51]. For V�¿ 0, the
free energy density fH favors an alignment of the director n parallel to H . By adding a term
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−V�H 2=2 on the right-hand side of Eq. (2.8), we shift the reference point in order that the mag-
netic free energy of a completely aligned director 0eld is zero. This will be useful in Section 4
where we calculate the free energy of the in0nitely extended space around a single particle.
The balance between elastic and magnetic torques on the director de0nes an important length
scale, the magnetic coherence length

�H =

√
K3

V�H 2 : (2.9)

Suppose the director is planarly anchored at a wall, and a magnetic 0eld is applied perpendicular
to it. Then �H gives the distance from the wall that is needed to orient the director along the
applied 0eld [51]. The coherence length tends to in0nity for H → 0.
Finally, we employ the surface free energy of Rapini–Papoular to take into account the

interaction of the director with boundaries:

fS =
W
2
[1− (n · �̂)2] : (2.10)

The unit vector �̂ denotes some preferred orientation of the director at the surface, and W
is the coupling constant. It varies in the range 10−4–1 erg=cm2 as reviewed by Blinov et al.
[14]. In Section 4.3.4 we will give a lower bound of W for the interface of water and the
liquid crystalline phase of 5CB in the presence of the surfactant sodium dodecyl sulfate, which
was used in the experiment by Poulin et al. [182,183] on nematic emulsions. From a com-
parison between the Frank free energy and the surface energy one arrives at the extrapolation
length [51]

�S =
K3
W
: (2.11)

It signi0es the strength of the anchoring. Take a particle of radius a in a nematic environment
with an uniform director 0eld at in0nity. (We will investigate this case thoroughly in Section 4.)
The Frank free energy of this system is proportional to K3a whereas the surface energy scales
as Wa2. At strong anchoring, i.e., for Wa2�K3a or �S�a, the energy to turn the director away
from its preferred direction �̂ at the whole surface would be much larger than the bulk energy.
Therefore, it is preferable for the system that the director points along �̂. However, n can deviate
from �̂ in an area of order �Sa. In Section 4.3.4 we will use this argument to explain a ring
con0guration around the particle. Rigid anchoring is realized for �S → 0. Finally, �S�a means
weak anchoring, where the in>uence of the surface is minor. Since in our discussion we have
always referred �S to the radius a, it is obvious that the strength of the anchoring is not an
absolute quantity but depends on characteristic length scales of the system.

2.2. Routes towards the director 4eld

The director 0eld n(r) in a given geometry follows from a minimization of the total free
energy Fn = Fel + F24 + FH + FS under the constraint that n is a unit vector:

�Fn = 0 with n ·n= 1 : (2.12)
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Even in the one-constant approximation and under the assumption of rigid anchoring of the
director at the boundaries, this is a diNcult problem to solve because of the additional con-
straint. Typically, full analytical solutions only exist for one-dimensional problems, e.g., for the
description of the FrXeedericksz transition [29,51], or in two dimensions when certain symmetries
are assumed [140]. To handle the constraint, one can use a Lagrange parameter or introduce
an appropriate parametrization for the director, e.g., a tilt (�) and twist (�) angle, so that the
director in the local coordinate basis takes the form

n= (sin� cos�; sin� sin�; cos�) : (2.13)

If an accurate analytical determination of the director 0eld is not possible, there are two strate-
gies. First, an ansatz function is constructed that ful0ls the boundary conditions and contains
free parameters. Then, the director 0eld follows from a minimization of the total free energy
in the restricted space of functions with respect to the free parameters. In Section 4.2 we will
see that this method is quite successful.
Secondly, one can look for numerical solutions of the Euler–Lagrange equations corresponding

to the variational problem formulated in Eq. (2.12). They are equivalent to functional derivatives
of Fn[�;�], where we use the tilt and twist angle of Eq. (2.13) to parametrize the director:

�Fn
��

=
�Fn
�ni

9ni
9� = 0 ; (2.14)

�Fn
��

=
�Fn
�ni

9ni
9� = 0 : (2.15)

Einstein’s summation convention over repeated indices is used. To arrive at the equations above
for �(r) and �(r), we have employed a chain rule for functional derivatives [219]. These chain
rules are useful in numerical problems since they allow to write the Euler–Lagrange equations,
which can be quite complex, in a more compact form. For example, the bulk and surface
equations that are solved in Section 4.3 could only be calculated with the help of the algebraic
program Maple after applying the chain rules.
Typically, we take a starting con0guration for the director 0eld and relax it on a grid via the

Newton–Gauss–Seidel method [187]. It is equivalent to Newton’s iterative way of determining
the zeros of a function but now generalized to functionals. We illustrate it here for the tilt
angle �:

�new(r) =�old(r)− �Fn=��(r)
“�2Fn=��2(r)”

: (2.16)

There are two possibilities to implement the method numerically. If the grid for the numerical
investigation is de0ned by the coordinate lines, one determines the Euler–Lagrange equations
analytically. Then, they are discretized by the method of 0nite di9erences for a discrete set of
grid points r [187]. Finally, “�2Fn=��2(r)” is calculated as the derivative of �Fn=��(r) with
respect to �(r) at the grid point r. We put “�2Fn=��2(r)” into quotes because it is not the dis-
cretized form of a real second-order functional derivative, which would involve a delta function.
If the geometry of the system is more complex, the method of 0nite elements is appropriate
(see Section 7). In two dimensions, e.g., the integration area is subdivided into 4nite elements,
which in the simplest case are triangles. In doing so, the boundaries of the complex geometry
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are well approximated by polygons. The 0nite-element technique generally starts from an al-
ready discretized version of the total free energy Fn and then applies a numerical minimiza-
tion scheme, e.g., the Newton–Gauss–Seidel method. Both the 0rst and second derivatives in
Eq. (2.16) are performed with respect to �(r) at the grid point r.

2.3. Hydrodynamic equations

In the last subsection we concentrated on the static properties of the director 0eld. In this
subsection we review a set of dynamic equations coupling the >ow of the liquid crystal to
the dynamics of the Frank director. The set consists of a generalization of the Navier–Stokes
equations for the >uid velocity C to uniaxial media and a dynamic equation for the director
n. We will not provide any detailed derivation of these equations, rather we will concentrate
on the explanation of their meaning. The main problem is how to 0nd a dynamic equation
for the director. An early approach dates back to Oseen [167]. Ericksen [67–71] and Leslie
[128,129] considered the liquid crystal as a Cosserat continuum [73] whose constituents pos-
sess not only translational but also orientational degrees of freedom. Based on methods of
rational thermodynamics [72], they derived an equation for the >uid velocity from the bal-
ance law for momentum density and an equation for the director, which they linked to the
balance law for angular momentum. The full set of equations is commonly referred to as the
Ericksen–Leslie equations. An alternative approach is due to the Harvard group [77,27] which
formulated equations following rigorously the ideas of hydrodynamics [76,27]. It only deals
with hydrodynamic variables, i.e., densities of conserved quantities, like mass, momentum, and
energy, or broken-symmetry variables. Each one obeys a conservation law. As a result, hydro-
dynamic modes exist whose, in general, complex frequencies become zero for vanishing wave
number. Excitations associated with broken-symmetry variables are called hydrodynamic
Goldstone modes according to a concept introduced by Goldstone in elementary particle physics
[92,93]. The director is such a variable that breaks the continuous rotational symmetry of the
isotropic >uid. In a completely linearized form the Ericksen–Leslie equations and the equations
of the Harvard group are identical.
In the following, we review the Ericksen–Leslie equations and explain them step by step.

In a symbolic notation, they take the form [29,51]

0 = div C ; (2.17)

%
dC
dt
= divT with T =−p1+ T0 + T ′ ; (2.18)

0= n × (h0 − h′) ; (2.19)

where the divergence of the stress tensor is de0ned by (divT)i=∇jTij. The 0rst equation states
that we consider an incompressible >uid. We also assume constant temperature in what follows.
The third equation balances all the torques on the director. We will discuss it below. The second
formula stands for the generalized Navier–Stokes equations. Note that

d
dt
=
9
9t + C ·grad (2.20)
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means the total or material time derivative as experienced by a moving >uid element. It includes
the convective part C ·grad. Besides the pressure p, the stress tensor consists of two terms:

T 0ij =− 9fb
9∇jnk

∇ink with fb = fel + f24 + fm ; (2.21)

T ′
ij = !1ninjnknlAkl + !2njNi + !3niNj + !4Aij + !5njnkAik + !6ninkAjk : (2.22)

In addition to p, T0 introduces a second, anisotropic contribution in the static stress tensor. It
is due to elastic distortions in the director 0eld, where fb denotes the sum of all free energy
densities introduced in Section 2.1. The quantity T ′ stands for the viscous part of the stress
tensor. In isotropic >uids, it is simply proportional to the symmetrized gradient of the velocity
0eld,

Aij = 1
2(∇ivj +∇jvi) : (2.23)

The conventional shear viscosity equals !4=2 in Eq. (2.22). The uniaxial symmetry of nematic
liquid crystals allows for further contributions proportional to A which contain the director n.
There are also two terms that depend on the time derivative of the director n, i.e., the second
dynamic variable,

N =
dn
dt

− !× n with != 1
2curl C : (2.24)

The vector N denotes the rate of change of n relative to the >uid motion, or more precisely,
relative to a local >uid vortex characterized by the angular velocity !=curl C=2. The viscosities
!1; : : : ; !6 are referred to as the Leslie coeNcients. We will gain more insight into T ′ at the end
of this subsection.
Finally, Eq. (2.19) demands that the total torque on the director due to elastic distortions

in the director 0eld (h0) and due to viscous processes (h′) is zero. The elastic and viscous
curvature forces are

h0i =∇j 9fb9∇jni
− 9fb
9ni

; (2.25)

h′i = %1Ni + %2Aijnj with %1 = !3 − !2 and %2 = !2 + !3 : (2.26)

De Gennes calls h0 a molecular 0eld reminiscent to a similar quantity in magnetism [51]. In
Eq. (2.19) the curvature force h0−h′ is only de0ned within an additive expression &(r; t)n(r; t). It
has the meaning of a Lagrange-multiplier term, and &(r; t) is to be determined by the condition
that the director is normalized to unity. In static equilibrium, we obtain h0(r)+&(r)n(r)=0, i.e.,
the Euler–Lagrange equation in the bulk which follows from minimizing the total free energy
Fn introduced in Section 2.1. One can easily show that the saddle-splay energy f24 does not
contribute to h0. The 0rst term of the viscous curvature force h′ describes the viscous process
due to the rotation of neighboring molecules with di9erent angular velocities. The coeNcient %1
is, therefore, a typical rotational viscosity. The second term quanti0es torques on the director
0eld exerted by a shear >ow. An inertial term for the rotational motion of the molecules is
not included in Eq. (2.19). One can show that it is of no relevance for the timescales of
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micro-seconds or larger. In the approach of the Harvard group, it does not appear since it results
in a non-hydrodynamic mode.
The energy dissipated in viscous processes follows from the entropy production rate

T
dS
dt
=
∫
(T ′ ·A+ h′ ·N) d3r ; (2.27)

where T is temperature, and S is entropy. The 0rst term describes dissipation by shear >ow and
the second one dissipation by rotation of the director. Each term in the entropy production rate
is always written as a product of a generalized >ux and its conjugate force. The true conjugate
force to the >ux A is the symmetrized viscous stress tensor T ′sym

ij = (T ′
ij + T

′
ji)=2. The >ux

N is conjugate to the generalized force h′: Note, that h′ corresponds to the dual form of the
antisymmetric part of T ′, i.e., h′i= 'ijk(T ′

jk −T ′
kj)=2. The Harvard group calls T

′sym and h′ >uxes
since they appear in the currents of the respective balance laws for momentum and director
[77,27]. In hydrodynamics the viscous forces are assumed to be small, and they are written as
linear functions of all the >uxes:(

T ′sym

h′
)
= 


(
A
N

)
: (2.28)

The matrix 
 must be compatible with the uniaxial symmetry of the nematic phase, and it must
be invariant when n is changed into −n. Furthermore, it has to obey Onsager’s theorem [52],
which demands a symmetric matrix 
 for zero magnetic 0eld. Ful0lling all these requirements
results in Eqs. (2.22) and (2.26). One additional, important Onsager relation is due to Parodi
[170]:

!2 + !3 = !6 − !5 : (2.29)

It reduces the number of independent viscosities in a nematic liquid crystal to 0ve. The Leslie
coeNcients of the compound 5CB are [39]

!1 =−0:111 P; !2 =−0:939 P; !3 =−0:129 P ;
!4 = 0:748 P; !5 = 0:906 P; !6 =−0:162 P : (2.30)

At the end, we explain two typical situations that help to clarify the meaning of the possible
viscous processes in a nematic and how they are determined by the Leslie coeNcients. In the
0rst situation we perform typical shear experiments as illustrated in Fig. 3. The director 0eld
between the plates is spatially uniform, and the upper plate is moved with a velocity v0 relative
to the lower one. There will be a constant velocity gradient along the vertical z direction. Three
simple geometries exist with a symmetric orientation of the director; it is either parallel to the
velocity 0eld C, or perpendicular to C and its gradient, or perpendicular to C and parallel to
its gradient. The director can be 0rmly aligned in one direction by applying a magnetic 0eld
strong enough to largely exceed the viscous torques. For all three cases, the shear forces T ′ per
unit area are calculated from the stress tensor T ′ of Eq. (2.22), yielding T ′ = )iC0=d, where d
is the separation between the plates. The viscosities as a function of the Leslie coeNcients for
all three cases are given in Fig. 3. They are known as Mie8sowicz viscosities after the scientist
who 0rst measured them [150,151]. If one chooses a non-symmetric orientation for the director,
the viscosity !1 is accessible in shear experiments too [84].
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Fig. 3. De0nition of the three MiZesowicz viscosities in shear experiments.

Fig. 4. Permeation of a >uid through a helix formed by the nematic director.

The second situation describes a Gedanken experiment illustrated in Fig. 4 [102]. Suppose
the nematic director forms a helical structure with wave number q0 inside a capillary. Such a
con0guration is found in cholesteric liquid crystals that form when the molecules are chiral.
Strictly speaking, the hydrodynamics of a cholesteric is more complicated than the one of
nematics [139]. However, for what follows we can use the theory formulated above. We assume
that the velocity 0eld in the capillary is spatially uniform and that the helix is not distorted by
the >uid >ow. Do we need a pressure gradient to press the >uid through the capillary, although
there is no shear >ow unlike a Poiseuille experiment? The answer is yes since the molecules
of the >uid, when >owing through the capillary, have to rotate constantly to follow the director
in the helix, which determines the average direction of the molecules. The dissipated energy
follows from the second term of the entropy production rate in Eq. (2.27). The rate of change,
N = C0 ·grad n, is non-zero due to the convective time derivative. The energy dissipated per unit
time and unit volume has to be matched by the work per unit time performed by the pressure
gradient p′. One 0nally arrives at

p′ = %1q20v0 : (2.31)

Obviously, the Gedanken experiment is determined by the rotational viscosity %1. It was sug-
gested by Helfrich [102] who calls the motion through a 0xed orientational pattern permeation.
This motion is always dissipative because of the rotational viscosity of the molecules which
have to follow the local director.
Of course, the Gedanken experiment is not suitable for measuring %1. A more appropriate

method is dynamic light scattering from director >uctuations [99,29]. Together with the shear
experiments it is in principle possible to measure all 0ve independent viscosities of a nematic
liquid crystal.
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2.4. Topological defects

Topological defects [111,146,226,27], which are a necessary consequence of broken continu-
ous symmetry, exist in systems as disparate as super>uid helium 3 [230] and 4 [235], crystalline
solids [224,81,160], liquid crystals [30,121,127], and quantum-Hall >uids [204]. They play an
important if not determining role in such phenomena as response to external stresses [81,160],
the nature of phase transitions [27,164,222], or the approach to equilibrium after a quench
into an ordered phase [21]; and they are the primary ingredient in such phases of matter as
the Abrikosov >ux-lattice phase of superconductors [1,13] or the twist-grain-boundary phase of
liquid crystals [193,94,95]. They even arise in certain cosmological models [34]. Topological
defects are points, lines or walls in three-dimensional space where the order parameter of the
system under consideration is not de0ned. The theory of homotopy groups [111,146,226,27]
provides a powerful tool to classify them. To identify, e.g., line defects, homotopy theory con-
siders closed loops in real space which are mapped into closed paths in the order parameter
space. If a loop can be shrunk continuously to a single point, it does not enclose a defect. All
other loops are divided into classes of paths which can be continuously transformed into each
other. Then, each class stands for one type of line defect. All classes together, including the
shrinkable loops, form the 4rst homotopy or fundamental group. The group product describes
the combination of defects. In the case of point singularities, the loops are replaced by closed
surfaces, and the defects are classi0ed via the second homotopy group.
In the next two subsections we deal with line and point defects in nematic liquid crystals

whose order parameter space is the projective plane P2 = S2=Z2, i.e., the unit sphere S2 with
opposite points identi0ed. They play a determining role for the behavior of colloidal disper-
sions in a nematic environment. There exist several good reviews on defects in liquid crystals
[111,146,226,27,30,121,127]. We will therefore concentrate on facts which are necessary for the
understanding of colloidal dispersions. Furthermore, rather than being very formal, we choose
a descriptive path for our presentation.

2.4.1. Line defects = disclinations
Line defects in nematic liquid crystals are also called disclinations. Homotopy theory tells

us that the fundamental group ,1(P2) of the projective plane P2 is the two-element group
Z2. Thus, there is only one class of stable disclinations. Fig. 5 presents two typical examples.
The defect line with the core is perpendicular to the drawing plane. The disclinations carry a
winding number of strength + or −1=2, indicating a respective rotation of the director by +
or −360◦=2 when the disclination is encircled in the anticlockwise direction (see left part of
Fig. 5). Note that the sign of the winding number is not 0xed by the homotopy group. Both
types of disclinations are topologically equivalent since there exists a continuous distortion of
the director 0eld which transforms one type into the other. Just start from the left disclination
in Fig. 5 and rotate the director about the vertical axis through an angle � when going outward
from the core in any radial direction. You will end up with the right picture. The line defects
in Fig. 5 are called wedge disclinations. In a Volterra process [111,27] a cut is performed so
that its limit, the disclination line, is perpendicular to the spatially uniform director 0eld. Then
the surfaces of the cut are rotated with respect to each other by an angle of 2�S about the
disclination line, and material is either 0lled in (S = +1=2) or removed (S = −1=2). In twist
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Fig. 5. Disclinations of winding number ±1=2. For further explanations see text.

disclinations the surfaces are rotated by an angle of � about an axis perpendicular to the defect
line. Disclinations of strength ±1=2 do not exist in a system with an vector order parameter
since it lacks the inversion symmetry of the nematic phase with respect to the director. In
addition, one 0nds ,1(S2) = 0, i.e., every disclination line of integral strength in a ferromagnet
is unstable; “it escapes into the third dimension”. The same applies to nematic liquid crystal as
demonstrated by Cladis et al. [35,236] and Bob Meyer [149] for S = 1.
The director 0eld around a disclination follows from the minimization of the Frank free energy

(2.6) [111,29,51]. In the one-constant approximation the line energy Fd of the disclination can
be calculated as

Fd =
,
4
K
(
1
2
+ ln

R
rc

)
: (2.32)

The surface term in Eq. (2.6) is neglected. The second term on the right-hand side of Eq. (2.32)
stands for the elastic free energy per unit length around the line defect where R is the radius of a
circular cross-section of the disclination (see Fig. 5). Since the energy diverges logarithmically,
one has to introduce a lower cut-o9 radius rc, i.e., the radius of the disclination core. Its line
energy, given by the 0rst term, is derived in the following way [111]. One assumes that the
core of the disclination contains the liquid in the isotropic state with a free energy density 'c
necessary to melt the nematic order locally. Splitting the line energy of the disclination as in
Eq. (2.32) into the sum of a core and elastic part, Fd = ,r2c 'c + K, ln(R=rc)=4, and minimizing
it with respect to rc, results in

'c =
K
8
1
r2c
; (2.33)

so that we immediately arrive at Eq. (2.32). The right-hand side of Eq. (2.33) is equivalent
to the Frank free energy density of the director 0eld at a distance rc from the center of the
disclination. Thus rc is given by the reasonable demand that the nematic state starts to melt
when this energy density equals 'c. With an estimate 'c = 10−7 erg=cm3, which follows from
a description of the nematic-isotropic phase transition by the Landau–de Gennes theory [126],
and K = 10−6 dyn, we obtain a core radius rc of the order of 10 nm. In the general case
(K1 	= K2 	= K3), an analytical expression for the elastic free energy does not exist. However,
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Fig. 6. Radial and hyperbolic hedgehog of point charge Q = 1.

a rough approximation for the core energy per unit length, Fc, can be found by averaging over
the Frank constants:

Fc =
,
8
K1 + K2 + K3

3
: (2.34)

In Section 4.3 we will make use of this form for Fc.
A more re0ned model of the disclination core is derived from Landau–de Gennes theory

[48,96,212], which employs a traceless second-rank tensor Q as an order parameter
(see Section 8.1). The tensor also describes biaxial liquid crystalline order. Investigations show
that the core of a disclination should indeed be biaxial [141,144,207], with a core radius of
the order of the biaxial correlation length �b, i.e., the length on which deviations from the
uniaxial order exponentially decay to zero. Outside of the disclination core, the nematic order is
essentially uniaxial. Therefore, the line energy of a disclination is still given by Eq. (2.32) with
rc ∼ �b, and with a core energy now determined by the energy di9erence between the biaxial
and uniaxial state rather than the energy di9erence between the isotropic and nematic state.

2.4.2. Point defects
Fig. 6 presents typical point defects in a nematic liquid crystal known as radial and hyperbolic

hedgehogs. Both director 0elds are rotationally symmetric about the vertical axis. The second
homotopy group ,2(P2) of the projective plane P2 is the set Z of all integer numbers. They
label every point defect by a topological charge Q. The result is the same as for the vector
order parameter space S2 since close to the point singularity the director 0eld constitutes a
unique vector 0eld. For true vectors it is possible to distinguish between a radial hedgehog of
positive and negative charge depending on their vector 0eld that can either represent a source
or a sink. In a nematic liquid crystal this distinction is not possible because n and −n describe
the same state. Note, e.g., that the directors close to a point defect are reversed if the defect is
moved around a± 1=2 disclination line. Therefore, the sign of the charge Q has no meaning in
nematics, and by convention it is chosen positive. The charge Q is determined by the number
of times the unit sphere is wrapped by all the directors on a surface enclosing the defect core.
An analytical expression for Q is

Q =
∣∣∣∣ 18�

∫
dSi 'ijkn ·(∇jn ×∇kn)

∣∣∣∣ ; (2.35)

where the integral is over any surface enclosing the defect core. Both the hedgehogs in Fig. 6
carry a topological charge Q=1. They are topologically equivalent since they can be transformed
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Fig. 7. The hyperbolic hedgehog at the center is transformed into a radial point defect by a continuous distortion
of the director 0eld. Nails indicate directors tilted relative to the drawing plane.

Fig. 8. A radial (left) and a hyperbolic (right) hedgehog combine to a con0guration with total charge 0 = |1− 1|.

into each other by a continuous distortion of the director 0eld. Just start from the hyperbolic
hedgehog and rotate the director about the vertical axis through an angle � when going outward
from the core in any radial direction. By this procedure, which is illustrated in Fig. 7 with the
help of a nail picture, we end up with a radial hedgehog. The length of the nail is proportional
to the projection of the director on the drawing plane, and the head of the nail is below the
plane. Such a transition was observed by Lavrentovich and Terentjev in nematic drops with
homeotropic, i.e., perpendicular anchoring of the director at the outer surface [126].
In systems with vector symmetry, the combined topological charge of two hedgehogs with

respective charges Q1 and Q2 is simply the sum Q1 + Q2. In nematics, where the sign of the
topological charge has no meaning, the combined topological charge of two hedgehogs is either
|Q1 +Q2| or |Q1 −Q2|.
It is impossible to tell with certainty which of these possible charges is the correct one

by looking only at surfaces enclosing the individual hedgehogs. For example, the combined
charge of two hedgehogs in the presence of a line defect depends on which path around the
disclination the point defects are combined [226]. In Fig. 8 we illustrate how a radial and a
hyperbolic hedgehog combine to a con0guration with total charge 0= |1−1|. Since the distance
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Fig. 9. A hyperbolic hedgehog can be opened up to a −1=2 disclination ring.

d of the defects is the only length scale in the system, dimensional arguments predict an
interaction energy proportional to Kd [169]. It grows linear in d reminiscent to the interaction
energy of quarks if one tries to separate them beyond distances larger than the diameter of a
nucleus.
The energies of the hedgehog con0gurations, shown in Fig. 6, are easily calculated from the

Frank free energy Fel +F24 [see Eqs. (2.2) and (2.3)]. The director 0elds of these con0gurations
are n = (x; y; z)=r for the radial and n = (−x;−y; z)=r for the hyperbolic hedgehog, where r =
(x; y; z) and r= |r|. In a spherical region of radius R with free boundary conditions at the outer
surface, we obtain for their respective energies:

Fradial = 4�(2K1 − K24)R→ 4�(2K − K24)R ;
Fhyper =

4�
15
(6K1 + 4K3 + 5K24)R→ 4�

3
(2K + K24)R ; (2.36)

where the 0nal expressions apply to the case of equal Frank constants. When K24 = 0, these
energies reduce to those calculated in Ref. [126]. Note that the Frank free energy of point defects
does not diverge in contrast to the distortion energy of disclinations in the preceding subsection.
The hyperbolic hedgehog has lower energy than the radial hedgehog provided K3¡ 6K1− 5K24
or K ¿K24 for the one-constant approximation. Thus, if we concentrate on the bulk energies,
i.e., K24 = 0, the hyperbolic hedgehog is always energetically preferred, since K1 is always of
the same order as K3. This seems to explain the observation of Lavrentovich and Terentjev,
already mentioned [126], who found the con0guration illustrated in Fig. 7 in a nematic drop
with radial boundary conditions at the outer surface. However, a detailed explanation has to take
into account the Frank free energy of the strongly twisted transition region between hyperbolic
and radial hedgehog [126]. In Section 7.4 we will present a linear stability analysis for the
radial hedgehog against twisting. In terms of the Frank constants, it provides a criterion for the
twist transition to take place, and its shows that the twisting starts close to the defect core. If,
in addition to the one-constant approximation, K24 also ful0ls the Cauchy relation (2.5), i.e.,
K=K24, the energies of the two hedgehog con0gurations in Eqs. (2.36) are equal, as one could
have predicted from Eq. (2.6), which is then invariant with respect to rigid rotations of even a
spatially varying n.
The twisting of a hedgehog in a nematic drop takes place at a length scale of several microns

[26,126,182]. However, point defect also possess a 0ne structure at smaller length scales, which
has attracted a lot of attention. Fig. 9 illustrates how a hyperbolic hedgehog opens up to a −1=2
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disclination ring by 0lling in vertical lines of the director 0eld. The far0eld of the disclination
ring is still given by the hedgehog so that the ring can be assigned the same topological point
charge Q = 1. Similarly, a radial point defect is topologically equivalent to a 1=2 disclination
ring. Mineev pointed out that the characterization of a ring defect requires two parameters; the
index of the line and the charge of the point defect [152]. The classi0cation of ring defects
within homotopy theory was developed by Garel [86] and Nakanishi et al. [161]. It can be
asked whether it is energetically favorable for a hedgehog to open up to a disclination ring
[155,225]. One can obtain a crude estimate of the radius R0 of the disclination ring with
the help of Eqs. (2.32) and (2.36) for disclination and hedgehog energies. When R0�rc, the
director con0guration of a charge 1 disclination ring is essentially that of a simple disclination
line, discussed in the previous subsection. It extends up to distances of order R0 from the ring
center. Beyond this radius, the director con0guration is approximately that of a hedgehog (radial
or hyperbolic). Thus, we can estimate the energy of a disclination ring of radius R0 centered
in a spherical region of radius R to be

Fring≈ 2�R0
[
�
4
K
(
1
2
+ ln

R0
rc

)]
+ 8�!K(R− R0) ; (2.37)

where !=1 for a radial hedgehog and !=1=3 for a hyperbolic hedgehog. We also set K24 =0.
Minimizing over R0, we 0nd

R0 = rc exp
[
16
�

(
!− 3�

32

)]
: (2.38)

Though admittedly crude, this approximation yields a result that has the same form as that
calculated in Refs. [155,225] using a more sophisticated ansatz for the director 0eld. It has the
virtue that it applies to both radial and hyperbolic far-0eld con0gurations. It predicts that the core
of a radial hedgehog should be a ring with radius R0≈ rce3:6, or R0≈ 360 nm for rc≈ 100 MA.
The core of the hyperbolic hedgehog, on the other hand, will be a point rather than a ring
because R0≈ rce−0:2≈ rc.
As in the case of disclinations, more re0ned models of the core of a point defect use the

Landau–de Gennes free energy, which employs the second-rank tensor Q as an order parameter.
Schopohl and Sluckin [208] chose a uniaxial Q but allowed the degree of orientational order,
described by the Maier–Saupe parameter S [29,51], to continuously approach zero at the cen-
ter of the defect. A stability analysis of the Landau–de Gennes free energy demonstrates that
the radial hedgehog is either metastable or unstable against biaxial perturbations in the order
parameter depending on the choice of the temperature and elastic constants [195,88]. Penzen-
stadler and Trebin modeled a biaxial defect core [171]. They found that the core radius is of the
order of the biaxial correlation length �b, which for the compound MBBA gives approximately
25 nm. This is an order of magnitude smaller than the estimate above. The reason might be that
the ansatz function used by Penzenstadler and Trebin does not include a biaxial disclination
ring. Such a ring encircles a region of uniaxial order, as illustrated in the right part of Fig. 9,
and it possesses a biaxial disclination core. Numerical studies indicate the existence of such a
ring [218,87] but a detailed analysis of the competition between a biaxial core and a biaxial
disclination ring is still missing. We expect that Eq. (2.37) for a disclination ring and therefore
Eq. (2.38) for its radius can be justi0ed within the Landau–de Gennes theory for R0�rc ∼ �b.
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However, the Frank elastic constant and the core energy will be replaced by combinations of
the Landau parameters. Since the ring radius R0 varies exponentially with the elastic constants
and the core energy, and since rc is only roughly de0ned, it is very diNcult to predict with
certainty even the order of magnitude of R0. Further investigations are needed.

3. Nematic colloidal dispersions

In this section we 0rst give a historic account of the topic relating it to recent developments
in the liquid crystal 0eld and reviewing the work performed on colloidal dispersions in nematic
liquid crystals. Then, with nematic emulsions, we introduce one particular model system for
such colloidal dispersions.

3.1. Historic account

Liquid crystal emulsions, in which surfactant-coated drops, containing a liquid crystalline
material, are dispersed in water, have been a particularly fruitful medium for studying topo-
logical defects for thirty years [147,61,26,126,121,60]. The liquid crystalline drops typically
range from 10 to 50 �m in diameter and are visible under a microscope. Changes in the Frank
director n are easily studied under crossed polarizers. The isolated drops in these emulsions
provide an idealized spherical con0ning geometry for the nematic phase. With the introduction
of polymer-dispersed liquid crystals as electrically controllable light shutters [58,60], an exten-
sive study of liquid crystals con0ned to complex geometries, like distorted drops in a polymer
matrix or a random porous network in silica aerogel, was initiated [60,44].
Here, we are interested in the inverse problem that is posed by particles suspended in a

nematic solvent. Already in 1970, Brochard and de Gennes studied a suspension of magnetic
grains in a nematic phase and determined the director 0eld far away from a particle [22].
The idea was to homogeneously orient liquid crystals with a small magnetic anisotropy by a
reasonable magnetic 0eld strength through the coupling between the liquid-crystal molecules
and the grains. The idea was realized experimentally by two groups [31,75]. However, even in
the highly dilute regime the grains cluster. Extending Brochard’s and de Gennes’ work, Burylov
and Raikher studied the orientation of an elongated particle in a nematic phase [24]. Chaining
of bubbles or microcrystallites was used to visualize the director 0eld close to the surface of
liquid crystals [191,36]. A bistable liquid crystal display was introduced based on a dispersion of
agglomerations of silica spheres in a nematic host [62,118,117,91]. The system was called 4lled
nematics. Chains and clusters were observed in the dispersion of latex particles in a lyotropic
liquid crystal [181,188,189]. The radii of the particles were 60 and 120 nm. Therefore, details
of the director 0eld could not be resolved under the polarizing microscope.
Terentjev et al. [225,119,201,213] started to investigate the director 0eld around a sphere by

both analytical and numerical methods, 0rst concentrating on the Saturn-ring and surface-ring
con0guration. Experiments of Philippe Poulin and coworkers on inverted nematic emulsions,
which we describe in the following subsection, clearly demonstrated the existence of a dipolar
structure formed by a water droplet and a companion hyperbolic hedgehog [182,179,183,184].
A similar observation at a nematic-isotropic interface was made by Bob Meyer in 1972 [148].
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Lately, Poulin et al. [180] were able to identify the dipolar structure in suspensions of latex
particles and they could observe an equatorial ring con0guration in the weak-anchoring limit of
nematic emulsions [153]. In a very recent paper, Gu and Abbott reported Saturn-ring con0gu-
rations around solid microspheres [97]. Particles in contact with the glass plates of a cell were
studied in Ref. [98]. Lubensky, Stark, and coworkers presented a thorough analytical and nu-
merical analysis of the director 0eld around a spherical particle [182,140,219]. It is discussed in
Section 4. Ramaswamy et al. [190] and Ruhwandl and Terentjev [200] determined the long-range
quadrupolar interaction of particles surrounded by a ring disclination, whereas Lubensky et
al. addressed both dipolar and quadrupolar forces [140] (see Section 5). Recently, Lev and
Tomchuk studied aggregates of particles under the assumption of weak anchoring [130]. Work
on the Stokes drag of a spherical object immersed into a uniformly aligned nematic was per-
formed by Diogo [57], Roman and Terentjev [194], and Heuer et al. [112,105]. The calculations
were extended to the Saturn-ring con0guration by Ruhwandl and Terentjev [199] and to the
dipolar structure by Ventzki and Stark [228], whose work is explored in detail in Section 6.
The Stokes drag was also determined through molecular dynamics simulations by Billeter and
Pelcovits [10]. Stark and Stelzer [220] numerically investigated multiple nematic emulsions
[182] by means of 0nite elements. We discuss the results in Section 7. It is interesting to note
that dipolar con0gurations also appear in two-dimensional systems including (1) free stand-
ing smectic 0lms [132,175], where a circular region with an extra layer plays the role of the
spherical particle, and (2) Langmuir 0lms [74], in which a liquid-expanded inclusion in a tilted
liquid-condensed region acts similarly. Pettey et al. [175] studied the dipolar structure in two
dimensions theoretically. In cholesteric liquid crystals particle-stabilized defect gels were found
[239], and people started to investigate dispersions of particles in a smectic phase [80,108,12].
Sequeira and Hill were the 0rst to measure the viscoelastic response of concentrated suspensions
of zeolite particles in nematic MBBA [209]. Meeker et al. [143] reported a gel-like structure
in nematic colloidal dispersions with a signi0cant shear modulus. Perfectly ordered chains of
oil droplets in a nematic were produced from phase separation by Loudet et al. [137]. Very
recent studies of the nematic order around spherical particles are based on the minimization of
the Landau–de Gennes free energy using an adaptive grid scheme [83], or they employ molec-
ular dynamics simulations of Gay–Berne particles [10,6]. The 0ndings are consistent with the
presentation in Section 4.
With two excellent publications [210,211], Ping Sheng initiated the interest in partially

ordered nematic 0lms above the nematic-isotropic phase transition temperature Tc using the
Landau–de Gennes approach. In 1981, Horn et al. [106] performed 0rst measurements of liquid
crystal-mediated forces between curved mica sheets. Motivated by both works, Poniewierski
and Sluckin re0ned Sheng’s study [177]. Bor\stnik and \Zumer explicitly considered two par-
allel plates immersed into a liquid crystal slightly above Tc [18], and thoroughly investigated
short-range interactions due to the surface-induced nematic order. An analog work was pre-
sented by de Gennes, however, assuming a surface-induced smectic order [50]. The e9ect of
such a presmectic 0lm was measured by Moreau et al. [154]. Recent studies address short-range
forces of spherical objects using either analytical methods [15], which we report in Section 8,
or numerical calculations [85]. In Section 8 we also demonstrate that such forces can induce
>occulation of colloidal particles above the nematic-isotropic phase transition [16,17]. In a
more general context, they were also suggested by LUowen [135,136]. Mu\sevi\c et al. probe these
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interactions with the help of an atomic force microscope [158,159,113], whereas BUottger
et al. [19] and Poulin et al. [178] are able to suspend solid particles in a liquid crystal above
Tc. Even Casimir forces arising from >uctuations in the liquid-crystalline order parameter were
investigated both in the nematic [3,2,223] and isotropic phase [240] of a liquid crystal.

3.2. Nematic emulsions

In 1996, Philippe Poulin succeeded in producing inverted and multiple nematic emulsions
[182,183]. The notion “inverted” refers to water droplets dispersed in a nematic solvent, in
contrast to direct liquid-crystal-in-water emulsions. If the solvent itself forms drops surrounded
by the water phase, one has multiple emulsions. We introduce them here since they initiated
the theoretical work we report in the following sections.
Philippe Poulin dispersed water droplets of 1 to 5 �m in diameter in a nematic liquid crystal

host, pentylcyanobiphenyl (5CB), which formed larger drops (∼ 50 �m diameter) surrounded
by a continuous water phase. This isolated a controlled number of colloidal droplets in the
nematic host which allowed to observe their structure readily. As a surfactant, a small amount
of sodium dodecyl sulfate was used. It is normally ine9ective at stabilizing water droplets in oil.
Nevertheless, the colloidal water droplets remained stable for several weeks, which suggested
that the origin of this stability is the surrounding liquid crystal—a hypothesis that was con0rmed
by the observation that droplets became unstable and coalesced in less than one hour after the
liquid crystal was heated to the isotropic phase. The surfactant also guaranteed a homeotropic,
i.e., normal boundary condition of the director at all the surfaces.
The multiple nematic emulsions were studied by observing them between crossed polarizers

in a microscope. Under such conditions, an isotropic >uid will appear black, whereas regions
in which there is the birefringent nematic will be colored. Thus the large nematic drops in
a multiple emulsion appear predominately red in Fig. 10a, 1 whereas the continuous water
phase surrounding them is black. Dispersed within virtually all of the nematic drops are smaller
colloidal water droplets, which also appear dark in the photo; the number of water droplets tends
to increase with the size of the nematic drops. Remarkably, in all cases, the water droplets are
constrained at or very near the center of the nematic drops. Moreover, their Brownian motion,
usually observed in colloidal dispersions, has completely ceased. However, when the sample
is heated to change the nematic into an isotropic >uid, the Brownian motion of the colloidal
droplets is clearly visible in the microscope.
Perhaps the most striking observation in Fig. 10a is the behavior of the colloidal droplets

when more than one of them cohabit the same nematic drop: the colloidal droplets invariably
form linear chains. This behavior is driven by the nematic liquid crystal: the chains break, and
the colloidal droplets disperse immediately upon warming the sample to the isotropic phase.
However, although the anisotropic liquid crystal must induce an attractive interaction to cause
the chaining, it also induces a shorter range repulsive interaction. A section of a chain of
droplets under higher magni0cation (see Fig. 10b) shows that the droplets are prevented from
approaching each other too closely, with the separation between droplets being a signi0cant

1 Reprinted with permission from P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz, Novel colloidal interactions in
anisotropic >uids, Science 275 (1997) 1770. Copyright 1997 American Association for the Advancement of Science.
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Fig. 10. (a) Microscope image of a nematic multiple emulsion taken under crossed polarizers, (b) a chain of water
droplets under high magni0cation, (c) a nematic drop containing a single water droplet.

fraction of their diameter. A careful inspection of Fig. 10b even reveals black dots between the
droplets which we soon will identify as topological point defects. The distance between droplets
and these host->uid defects increases with the droplet radius.
To qualitatively understand the observation, we start with one water droplet placed at the

center of a large nematic drop. The homeotropic boundary condition enforces a radial director
0eld between both spherical surfaces. It exhibits a distinctive four-armed star of alternating
bright and dark regions under crossed polarizers that extend throughout the whole nematic drop
as illustrated in Fig. 10c. Evidently, following the explanations in Section 2:4:2 about point
defects, the big nematic drop carries a topological point charge Q = 1 that is matched by the
small water droplet which acts like a radial hedgehog. Each water droplet beyond the 0rst
added to the interior of the nematic drop must create orientational structure out of the nematic
itself to satisfy the global constraint Q = 1. The simplest (though not the only [140]) way to
satisfy this constraint is for each extra water droplet to create a hyperbolic hedgehog in the
nematic host. Note that from Fig. 8 we already know that a radial hedgehog (represented by
the water droplet) and a hyperbolic point defect carry a total charge zero. Hence, N water
droplets in a large nematic drop have to be accompanied by N − 1 hyperbolic hedgehogs.
Fig. 11 presents a qualitative picture of the director 0eld lines for a string of three droplets. It
is rotationally symmetric about the horizontal axis. Between the droplets, hyperbolic hedgehogs
appear. They prevent the water droplets from approaching each other and from 0nally coalescing
since this would involve a strong distortion of the director 0eld. The defects therefore mediate
a short-range repulsion between the droplets.
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Fig. 11. The director 0eld lines of a nematic drop containing a string of three spherical particles.

In the following sections, we demonstrate the physical ideas which evolved from the experi-
ments on multiple nematic emulsions. We will explain the chaining of droplets by introducing
the topological dipole formed by one spherical particle and its companion hyperbolic defect.
This leads us to the next chapter where we investigate the simplest situation, i.e., one particle
placed in a nematic solvent which is uniformly aligned at in0nity.

4. The paradigm---one particle

The multiple nematic emulsions that we introduced in Section 3.2 are already a complicated
system. In this section we investigate thoroughly by both analytical and numerical means what
I regard as the paradigm for the understanding of inverted nematic emulsions. We ask which
director 0eld con0gurations do occur when one spherical particle that prefers a radial anchoring
of the director at its surface is placed into a nematic solvent uniformly aligned at in0nity. This
constitutes the simplest problem one can think of, and it is a guide to the understanding of
more complex situations.

4.1. The three possible con4gurations

If the directors are rigidly anchored at the surface, the particle carries a topological charge
Q = 1. Because of the boundary conditions at in0nity, the total charge of the whole system
is zero; therefore, the particle must nucleate a further defect in its nematic environment. One
possibility is a dipolar structure where the particle and a hyperbolic hedgehog form a tightly
bound object which we call dipole for short (see Fig. 12). As already explained in Fig. 8, the
topological charges +1 of a radial hedgehog, represented by the particle, and of a hyperbolic
point defect “add up” to a total charge of zero. In the Saturn-ring con0guration, a −1=2
disclination ring encircles the spherical particle at its equator (see Fig. 12). Of course, the
disclination ring can be moved upward or downward, and by shrinking it to the topologically
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Fig. 12. A spherical particle with a preferred homeotropic anchoring at its surface that is placed into a uniformly
aligned nematic liquid crystal exhibits three possible structures: the dipole con0guration where the particle is ac-
companied by a hyperbolic hedgehog, the Saturn-ring con0guration where the particle is surrounded by a −1=2
disclination ring at the equator, and the surface-ring con0guration.

equivalent hyperbolic hedgehog, the Saturn ring is continuously transformed into the dipole
con0guration. However, our calculations show that a non-symmetric position of the defect ring
is never stable. When the surface anchoring strength W is lowered (see Fig. 12), the core of
the disclination ring prefers to sit directly at the surface of the particle. For suNciently low W ,
the director 0eld becomes smooth everywhere, and a ring of tangentially oriented directors is
located at the equator of the sphere. In the case of tangential boundary conditions, there exists
only one structure. It possesses two surface defects, called boojums, at the north and south pole
of the particle [145,26,120,231]. We will not investigate it further.
It is instructive to 0rst consider the director 0eld far away from the particle, which crucially

depends on the global symmetry of the system [22,140]. With its knowledge, ansatz functions
for the director con0gurations around a particle can be checked. Furthermore, the far 0eld
determines the long-range two-particle interaction. Let the director n0 at in0nity point along the
z axis. Then, in the far 0eld, the director is approximated by n(r)≈ (nx; ny; 1) with nx; ny�1.
In leading order, the normalization of the director can be neglected, and the Euler–Lagrange
equations for nx and ny arising from a minimization of the Frank free energy in the one-constant
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approximation are simply Laplace equations:

∇2n3 = 0 : (4.1)

The solutions are the well-known multipole expansions of electrostatics that include monopole,
dipole, and quadrupole terms. They are all present if the suspended particle has a general shape
or if, e.g., the dipole in Fig. 12 is tilted against n0. In the dipole con0guration with its axial
symmetry about n0, the monopole is forbidden, and we obtain

nx = p
x
r3
+ 2c

zx
r5

and ny = p
y
r3
+ 2c

zy
r5
; (4.2)

where r = (x2 + y2 + z2)1=2. We use the expansion coeNcients p and c to assign both a dipole
(p) and quadrupole (c) moment to the con0guration:

p= pn0 and c = c(n0 ⊗ n0 − 1=3) : (4.3)

The symbol ⊗ means tensor product, and 1 is the unit tensor of second rank. We adopt the
convention that the dipole moment p points from the companion defect to the particle. Hence,
if p¿ 0, the far 0eld of Eqs. (4:2) belongs to a dipole con0guration with the defect sitting
below the particle (see Fig. 12). Note, that by dimensional analysis, p ∼ a2 and c ∼ a3, where
a is the radius of the spherical particle. Saturn-ring and surface-ring con0gurations possess a
mirror plane perpendicular to the rotational axis. Therefore, the dipole term in Eqs. (4:2) is
forbidden, i.e., p=0. We will show in Section 6 that the multipole moments p and c determine
the long-range two-particle interaction. We will derive it on the basis of a phenomenological
theory.
In the present section we investigate the dipole by both analytical and numerical means.

First, we identify a twist transition which transforms it into a chiral object. Then, we study the
transition from the dipole to the Saturn ring con0guration, which is induced either by decreasing
the particle radius or by applying a magnetic 0eld. The role of metastability is discussed. Finally,
we consider the surface-ring con0guration and point out the importance of the saddle-splay free
energy F24. Lower bounds for the surface-anchoring strength W are given.

4.2. An analytical investigation of the dipole

Even in the one-constant approximation and for 0xed homeotropic boundary conditions, an-
alytical solutions of the Euler–Lagrange equations, arising from the minimization of the Frank
free energy, cannot be found. The Euler–Lagrange equations are highly non-linear due to the
normalization of the director. In this subsection we investigate the dipole con0guration with
the help of ansatz functions that obey all boundary conditions and possess the correct far-0eld
behavior. The free parameters in these ansatz functions are determined by minimizing the Frank
free energy. We will see that this procedure already provides a good insight into our system.
We arrive at appropriate ansatz functions by looking at the electrostatic analog of our problem

[182,140], i.e., a conducting sphere of radius a and with a reduced charge q which is exposed
to an electric 0eld of unit strength along the z axis. The electric 0eld is

E(r) = ez + qa2
r
r3

− a3 r
2ez − 3zr
r5

: (4.4)
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Fig. 13. Frank free energy (in units of ,Ka) for the topological dipole as a function of the reduced distance rd=a
from the particle center to the companion hedgehog.

In order to enforce the boundary condition that E be normal to the surface of the sphere,
an electric image dipole has to be placed at the center of the sphere. The ansatz function for
the director 0eld follows from a normalization: n(r)=E(r)=|E(r)|. An inspection of its far 0eld
gives

n(r)≈
(
qa2

x
r3
+ 3a3

xz
r5
; qa2

y
r3
+ 3a3

yz
r5
)
; (4.5)

in agreement with Eqs. (4:2). The electrostatic analog assigns a dipole moment qa2 and a
quadrupole moment 3a3=2 to the topological dipole. The zero of the electric 0eld determines
the location −rdez of the hyperbolic hedgehog on the z axis. Thus, q or the distance rd from the
center of the particle are the variational parameters of our ansatz functions. Note that for q=3,
the hedgehog just touches the sphere, and that for q¡ 3, a singular ring appears at the surface
of the sphere. In Fig. 13 we plot the Frank free energy in the one-constant approximation
and in units of ,Ka as a function of the reduced distance rd=a. The saddle-splay term is not
included, since for rigid anchoring it just provides a constant energy shift. There is a pronounced
minimum at rd0 = 1:17a corresponding to a dipole moment p = qa2 = 3:08a2. The minimum
shows that the hyperbolic hedgehog sits close to the spherical particle. To check the magnitude
of the thermal >uctuations of its radial position, we determine the curvature of the energy curve
at rd0; its approximate value amounts to 33,K=a. According to the equipartition theorem, the
average thermal displacement �rd0 follows from the expression

�rd0
a

≈
√

kBT
33�Ka ≈ 2× 10

−3 ; (4.6)

where the 0nal estimate employs kBT ≈ 4×10−14 erg; K ≈ 10−6 dyn, and a=1 �m. These >uctu-
ations in the length of the topological dipole are unobservably small. For angular >uctuations of
the dipole, we 0nd �5≈ 10−2, i.e., still diNcult to observe [140]. We conclude that the spherical
particle and its companion hyperbolic hedgehog form a tightly bound object. Interestingly, we
note that angular >uctuations in the 2D version of this problem diverge logarithmically with
the sample size [175]. They are therefore much larger and have indeed been observed in free
standing smectic 0lms [132].
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Fig. 14. (Top) Image of a single droplet with its companion defect as observed under crossed polarizers obtained
by Poulin [183]. (Bottom) Simulated image of the same con0guration using the Jones matrix formalism [140]. The
two pictures are very similar. From Ref. [140].

The droplet-defect dipole was observed by Philippe Poulin in inverted nematic emulsions
[183]. In the top part of Fig. 14 we present how it looks like in a microscope under crossed
polarizers, with one polarizer parallel to the dipole axis. In the bottom part of Fig. 14 we show
a calculated image using the Jones matrix formalism [60] based on the director 0eld of the
electrostatic analog. Any refraction at the droplet boundary is neglected. The similarity of the
two images is obvious and clearly con0rms the occurrence of the dipole con0guration.
The electric 0eld ansatz is generalized by no longer insisting that it originates in a true

electric 0eld. This allows us to introduce additional variational parameters [140]. The Frank
free energy at rd0 is lowered, and the equilibrium separation amounts to rd0 = 1:26a. The
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respective dipole and quadrupole moments turn out to be p= 2:20a2 and c=−1:09a2. We are
also able to construct ansatz functions for the dipole–Saturn ring transition utilizing the method
of images for the related 2D problem and correcting the far 0eld [140]. The results agree with
the numerical study presented in the next subsection.

4.3. Results and discussion of the numerical study

Before we present the results of our numerical study, we summarize the numerical method.
Details can be found in [219].

4.3.1. Summary of numerical details
The numerical investigation is performed on a grid which is de0ned by modi0ed spherical

coordinates. Since the region outside the spherical particle is in0nitely extended, we employ
a radial coordinate 6 = 1=r2. The exponent 2 is motivated by the far 0eld of the dipole con-
0guration. Such a transformation has two advantages. The exterior of the particle is mapped
into a 0nite region, i.e., the interior of the unit sphere (6 6 1). Furthermore, equally spaced
grid points along the coordinate 6 result in a mesh size in real space which is small close to
the surface of the particle. In this area the director 0eld is strongly varying, and hence a good
resolution for the numerical calculation is needed. On the other hand, the mesh size is large
far away from the sphere where the director 0eld is nearly homogeneous. Since our system is
axially symmetric, the director 0eld only depends on 6 and the polar angle 5. The director is
expressed in the local coordinate basis (er ; e5; e7) of the standard spherical coordinate system,
and the director components are parametrized by a tilt [�(6; 5)] and a twist [�(6; 5)] angle:
nr = cos�; n5 = sin� cos�, and n7 = sin� sin�.
The total free energy Fn of Eq. (2.1) is expressed in the modi0ed spherical coordinates. Then,

the Euler–Lagrange equations in the bulk and at the surface are formulated with the help of
the chain rules of Eqs. (2.14) and (2.15) and by utilizing the algebraic program Maple. A
starting con0guration of the director 0eld is chosen and relaxed into a local minimum via the
Newton–Gauss–Seidel method [187] which was implemented in a Fortran program.
So far we have described the conventional procedure of a numerical investigation. Now, we

address the problem of how to describe disclination rings numerically. Fig. 15 presents such a
ring whose general position is determined by a radial (rd) and an angular (5d) coordinate. The
free energy Fn of the director 0eld follows from a numerical integration. This assigns some
energy to the disclination ring which certainly is not correct since the numerical integration
does not realize the large director gradients close to the defect core. To obtain a more accurate
value for the total free energy F , we use the expression

F = Fn − Fn|torus + Fc=d × 2�rd sin 5d ; (4.7)

where Fc and Fd are the line energies of a disclination introduced in Eqs. (2.32) and (2.34).
The quantity Fn|torus denotes the numerically calculated free energy of a toroidal region of cross
section �R2 around the disclination ring. Its volume is �R2 × 2�rd sin 5d. The value Fn|torus is
replaced by the last term on the right-hand side of Eq. (4.7), which provides the correct free
energy with the help of the line energies Fc or Fd. We checked that the cross section �R2
of the cut torus has to be equal or larger than 3V6V5=2, where V6 and V5 are the lattice
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Fig. 15. Coordinates (rd ; 5d) for a −1=2 disclination ring with a general position around the spherical particle. From
Ref. [219].

Fig. 16. The reduced distance rd=a of the hyperbolic hedgehog from the center of the sphere as a function of the
reduced splay (K1=K3) and twist (K2=K3) constants.

constants of our grid. For larger cross sections, the changes in the free energy F for 0xed
core radius rc were less than 1%, i.e., F became independent of �R2. What is the result of
this procedure? All lengths in the free energy Fn can be rescaled by the particle radius a. This
would suggest that the director con0guration does not depend on the particle size. However,
with the illustrated procedure a second length scale, i.e., the core radius rc of a disclination,
enters. All our results on disclination rings therefore depend on the ratio a=rc. In discussing
them, we assume rc≈ 10 nm [111] which then determines the radius a for a given a=rc.

4.3.2. Twist transition of the dipole con4guration
In this subsection we present our numerical study of the topological dipole. We always

assume that the directors are rigidly anchored at the surface (W → ∞) and choose a zero
magnetic 0eld. In Fig. 16 we plot the reduced distance rd=a of the hedgehog from the center
of the sphere as a function of the reduced splay (K1=K3) and twist (K2=K3) constants. In the
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Fig. 17. (a) Nail picture of a closeup of the twisted dipole con0guration. Around the hyperbolic hedgehog the
directors are tilted relative to the drawing plane. From Ref. [219]. (b) Phase diagram of the twist transition as a
function of the reduced splay (K1=K3) and twist (K2=K3) constants. A full explanation is given in the text.

one-constant approximation, we 0nd rd=1:26±0:02, where the mesh size of the grid determines
the uncertainty in rd. Our result is in excellent agreement with the generalized electric-0eld
ansatz we introduced in the last subsection [140]. However, Ruhwandl and Terentjev using a
Monte-Carlo minimization report a somewhat smaller value for rd [200]. In front of the thick
line rd is basically constant. Beyond the line, rd starts to grow which indicates a structural
change in the director 0eld illustrated in the nail picture of Fig. 17a. Around the hyperbolic
hedgehog the directors develop a non-zero azimuthal component n7, i.e., they are tilted relative
to the drawing plane. This introduces a twist into the dipole. It should be visible under a
polarizing microscope when the dipole is viewed along its symmetry axis.
In Fig. 17b we draw a phase diagram of the twist transition. As expected, it occurs when

K1=K3 increases or when K2=K3 decreases, i.e., when a twist deformation costs less energy than
a splay distortion. The open circles are numerical results for the transition line which can well
be 0tted by the straight line K2=K3≈K1=K3 − 0:04. Interestingly, the small o9set 0.04 means
that K3 does not play an important role. Typical calamatic liquid crystals like MBBA, 5CB,
and PAA should show the twisted dipole con0guration.
Since the twist transition breaks the mirror symmetry of the dipole, which then becomes a

chiral object, we describe it by a Landau expansion of the free energy:

F = F0 + a(K1=K3; K2=K3)[nmax7 ]2 + c[nmax7 ]4 : (4.8)

With the maximum azimuthal component nmax7 we have introduced a simple order parameter.
Since the untwisted dipole possesses a mirror symmetry, only even powers of nmax7 are allowed.
The phase transition line is determined by a(K1=K3; K2=K3) = 0. According to Eq. (4.8), we
expect a power-law dependence of the order parameter with the exponent 1=2 in the twist
region close to the phase transition. To test this idea, we choose a constant K2=K3 ratio and
determine nmax7 for varying K1. As the log–log plot in Fig. 18 illustrates, when approaching the
phase transition, the order parameter obeys the expected power law:

nmax7 ∼ (K1=K3 − 0:4372)1=2 with K2=K3 = 0:4 : (4.9)
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Fig. 18. Log–log plot of the order parameter nmax7 versus K1=K3 close to the twist transition (K2=K3 = 0:4);
◦ : : : numerical values, – : : : 0t by a straight line.

Fig. 19. The free energy F in units of �K3a as a function of the angular coordinate 5d. The parameter of the curves
is the particle size a. Further parameters are indicated in the inset.

4.3.3. Dipole versus Saturn ring
There are two possibilities to induce a transition from the dipole to the Saturn-ring con0g-

uration; either by reducing the particle size or by applying, e.g., a magnetic 0eld. We always
assume rigid anchoring in this subsection, set K24 = 0, and start with the 0rst point.

4.3.3.1. E<ect of particle size. In Fig. 19 we plot the free energy F in units of �K3a as a
function of the angular coordinate 5d of the disclination ring. For constant 5d, the free energy
F was chosen as the minimum over the radial coordinate rd. The particle radius a is the
parameter of the curves, and the one-constant approximation is employed. Recall that 5d = �=2
and 5d = � correspond, respectively, to the Saturn-ring or the dipole con0guration. Clearly, for
small particle sizes (a= 180 nm) the Saturn ring is the absolutely stable con0guration, and the
dipole enjoys some metastability. However, thermal >uctuations cannot induce a transition to the
dipole since the potential barriers are much higher than the thermal energy kBT . E.g., a barrier
of 0:1�K3a corresponds to 1000kBT (T =300K; a=1 �m). At a≈ 270 nm, the dipole assumes
the global minimum of the free energy, and 0nally the Saturn ring becomes absolutely unstable
at a≈ 720 nm. The scenario agrees with the results of Ref. [140] where an ansatz function for
the director 0eld was used. Furthermore, we stress that the particle sizes were calculated with
the choice of 10 nm as the real core size of a line defect, and that our results depend on the
line energy (2.32) of the disclination.
The reduced radial coordinate rd=a of the disclination ring as a function of 5d is presented

in Fig. 20. It was obtained by minimizing the free energy for 0xed 5d. As long as the ring is
open, rd does not depend on 5d within an error of ±0:01. Only in the region where it closes
to the hyperbolic hedgehog, does rd increase sharply. The 0gure also illustrates that the ring
sits closer to larger particles. The radial position of rd=a = 1:10 for 720 nm particles agrees
very well with analytical results obtained by using an ansatz function (see Refs. [140]) and
with numerical calculations based on a Monte-Carlo minimization [200]. Recent observations of
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Fig. 20. The reduced radial coordinate rd=a of a disclination ring as a function of 5d for two particle sizes. Further
parameters are indicated in the inset.

the Saturn-ring con0guration around glass spheres of 40, 60, or 100 �m in diameter [97] seem
to contradict our theoretical 0ndings. However, we explain them by the strong con0nement in
120-�m-thick liquid crystal cells which is equivalent to a strong magnetic 0eld.

4.3.3.2. E<ect of a magnetic 4eld. A magnetic 0eld applied along the symmetry axis of the
dipole can induce a transition to the Saturn-ring con0guration. This can be understood from
a simple back-of-the-envelope calculation. Let us consider high magnetic 0elds, i.e., magnetic
coherence lengths much smaller than the particle size a. The magnetic coherence length �H was
introduced in Eq. (2.9) as the ratio of elastic and magnetic torques on the director. For �H�a,
the directors are basically aligned along the magnetic 0eld. In the dipole con0guration, the
director 0eld close to the hyperbolic hedgehog cannot change its topology. The 0eld lines are
“compressed” along the z direction, and high densities of the elastic and magnetic free energies
occur in a region of thickness �H . Since the 0eld lines have to bend around the sphere, the cross
section of the region is of the order of a2, and its volume is proportional to a2�H . The Frank
free energy density is of the order of K=�2H , where K is a typical Frank constant, and therefore
the elastic free energy scales with Ka2=�H . The same holds for the magnetic free energy. In
the case of the Saturn-ring con0guration, high free energy densities occur in a toroidal region
of cross section ˙�2H around the disclination ring. Hence, the volume scales with a�

2
H , and the

total free energy is of the order of Ka, i.e., a factor a=�H smaller than for the dipole.
Fig. 21 presents a calculation for a particle size of a=0:5 �m and the liquid crystal compound

5CB. We plot the free energy in units of �K3a as a function of 5d for di9erent magnetic
0eld strengths which we indicate by the reduced inverse coherence length a=�H . Without a
0eld (a=�H = 0), the dipole is the energetically preferred con0guration. The Saturn ring shows
metastability. A thermally induced transition between both states cannot happen because of
the high potential barrier. At a 0eld strength a=�H = 0:33, the Saturn ring becomes the stable
con0guration. However, there will be no transition until the dipole loses its metastability at a
0eld strength a=�H =3:3, which is only indicated by an arrow in Fig. 21. Once the system has
changed to the Saturn ring, it will stay there even for zero magnetic 0eld. Fig. 22a schematically
illustrates how a dipole can be transformed into a Saturn ring with the help of a magnetic 0eld.
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Fig. 21. The free energy F in units of ,K3a as a function of the angular coordinate 5d. The parameter of the curves
is the reduced inverse magnetic coherence length a=�H . Further parameters are indicated in the inset.

Fig. 22. (a) The Saturn ring is metastable at H=0. The dipole can be transformed into the Saturn ring by increasing
the magnetic 0eld H beyond Ht2 where the dipole loses its metastability. Turning o9 the 0eld the Saturn ring remains.
(b) The Saturn ring is unstable at H = 0. When the magnetic 0eld is decreased from values above Ht2, the Saturn
ring shrinks back to the dipole at Ht1 where the Saturn ring loses its metastability. A hysteresis occurs. From
Ref. [219].

If the Saturn ring is unstable at zero 0eld, a hysteresis occurs (see Fig. 22b). Starting from
high magnetic 0elds, the Saturn ring loses its metastability at Ht1, and a transition back to the
dipole takes place. In Fig. 19 we showed that the second situation is realized for particles larger
than 720 nm. We also performed calculations for a particle size of 1 �m and the liquid crystal
compound 5CB and still found the Saturn ring to be metastable at zero 0eld in contrast to the
result of the one-constant approximation.
To be more concrete, according to Eq. (2.9), a=�H =1 corresponds to a 0eld strength of 4:6T

when 0:5 �m particles and the material parameters of 5CB (K3 = 0:53× 10−6 dyn; V� = 10−7)
are used. Hence, the transition to the Saturn ring in Fig. 21 occurs at a rather high 0eld of
15T. Assuming that there is no dramatic change in a=�H = 3:3 for larger particles, this 0eld
decreases with increasing particle radius. Alternatively, the transition to the Saturn ring is also
induced by an electric 0eld with the advantage that strong 0elds are much easier to apply.
However, the large dielectric anisotropy V'= '‖− '⊥ complicates a detailed analysis because of
the di9erence between applied and local electric 0elds. Therefore, the electric coherence length
�E=[4�K3=(V' E2)]1=2, which replaces �H , only serves as a rough estimate for the applied 0eld
E necessary to induce a transition to the Saturn ring.

4.3.4. In>uence of 4nite surface anchoring
In the last subsection we investigate the e9ect of 0nite anchoring on the director 0eld around

the spherical particle. The saddle-splay term with its elastic constant K24 is important now. We
always choose a zero magnetic 0eld. In Fig. 23 we employ the one-constant approximation and
plot the free energy versus the reduced surface extrapolation length �S=a for di9erent reduced
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Fig. 23. The minimum free energy F in units of ,K3a as a function of the reduced surface extrapolation length �S=a
for di9erent K24=K3. A 0rst-order phase transition from the dipole to the surface ring occurs. Further parameters are
indicated in the inset.

Fig. 24. The saddle-splay free energy F24 in units of ,K3a as a function of �S=a for the same curves as in
Fig. 23. Inset: F24 in units of ,K24a versus the angular width of the surface ring calculated from the ansatz
functions in Eqs. (4.10).

Fig. 25. Phase diagram of the dipole-surface ring transition as a function of �S=a and K24=K3. Further parameters
are indicated in the inset.

saddle-splay constants K24=K3. Recall that �S is inversely proportional to the surface constant W
[see Eq. (2.11)]. The straight lines belong to the dipole. Then, for decreasing surface anchoring,
there is a 0rst-order transition to the surface-ring structure. We never 0nd the Saturn ring to be
the stable con0guration although it enjoys some metastability. For K24=K3=0, the transition takes
place at �S=a≈ 0:085. This value is somewhat smaller than the result obtained by Ruhwandl
and Terentjev [200]. One could wonder why the surface ring already occurs at such a strong
anchoring like �S=a≈ 0:085 where any deviation from the homeotropic anchoring costs a lot of
energy. However, if V5 is the angular width of the surface ring where the director deviates from
the homeotropic alignment (see inset of Fig. 24) then a simple energetical estimate allows V5 to
be of the order of �S=a. It is interesting to see that the transition point shifts to higher anchoring
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strengths, i.e., decreasing �S=a when K24=K3 is increased. Obviously, the saddle-splay term favors
the surface-ring con0guration. To check this conclusion, we plot the reduced saddle-splay free
energy F24 versus �S=a in Fig. 24. The horizontal lines belong to the dipole. They correspond
to the saddle-splay energy 4�K24a which one expects for a rigid homeotropic anchoring at the
surface of the sphere. In contrast, for the surface-ring con0guration the saddle-splay energy drops
sharply. The surface ring at the equator of the sphere introduces a “saddle” in the director 0eld
as illustrated in the inset of Fig. 24. Such structures are known to be favored by the saddle-splay
term. We modeled the surface ring with an angular width V5 by the following radial and polar
director components:

nr =−tanh
(
5− �=2
V5

)
and n5 =−

[
cosh

(
5− �=2
V5

)]−1
; (4.10)

where V5��=2 to ensure that nr =1 at 5=0; �, and calculated the saddle-splay energy versus
V5 by numerical integration. The result is shown in the inset of Fig. 24. It 0ts very well to
the full numerical calculations and con0rms again that a narrow “saddle” around the equator
can considerably reduce the saddle-splay energy.
For the liquid crystal compound 5CB we determined the stable con0guration as a function

of K24=K3 and �S=a. The phase diagram is presented in Fig. 25. With its help, we can derive
a lower bound for the surface constant W at the interface of water and 5CB when the surfac-
tant sodium dodecyl sulfate is involved. As the experiments by Poulin et al. clearly demon-
strate, water droplets dispersed in 5CB do assume the dipole con0guration. From the phase
diagram we conclude �S=a¡ 0:09 as a necessary condition for the existence of the dipole. With
a≈ 1 �m; K3 = 0:53× 10−6 dyn, and de0nition (2.11) for �S we arrive at

W ¿ 0:06 erg=cm2 : (4.11)

If we assume the validity of the Cauchy relation (2.5), which for 5CB gives K24=K3 = 0:61,
we conclude that W ¿ 0:15 erg=cm2. Recently, Mondain-Monval et al. were able to observe an
equatorial ring structure by changing the composition of a surfactant mixture containing sodium
dodecyl sulfate (SDS) and a copolymer of ethylene and propylene oxide (Pluronic F 68) [153].
We conclude from our numerical investigation that they observed the surface-ring con0guration.

4.4. Conclusions

In this section we presented a detailed study of the three director 0eld con0gurations around
a spherical particle by both analytical and numerical means. We clearly 0nd that for large
particles and suNciently strong surface anchoring, the dipole is the preferred con0guration.
For conventional calamitic liquid crystals, where K2¡K1, the dipole should always exhibit
a twist around the hyperbolic hedgehog. It should not occur in discotic liquid crystals where
K2¿K1. According to our calculations, the bend constant K3 plays only a minor role in the twist
transition. The Saturn ring appears for suNciently small particles provided that one can realize
a suNciently strong surface anchoring. According to our investigation, for 200 nm particles the
surface constant has to be larger than W =0:3 erg=cm2. However, the dipole can be transformed
into the Saturn ring by means of a magnetic 0eld if the Saturn ring is metastable at H =0.
Otherwise a hysteresis is visible. For the liquid crystal compound 5CB, we 0nd the Saturn ring
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to be metastable at a particle size a = 1 �m. Increasing the radius a, this metastability will
vanish in analogy with our calculations within the one-constant approximation (see Fig. 19).
Lowering the surface-anchoring strength W , the surface-ring con0guration with a quadrupolar
symmetry becomes absolutely stable. We never 0nd a stable structure with dipolar symmetry
where the surface ring possesses a general angular position 5d or is even shrunk to a point at
5d = 0; �. The surface ring is clearly favored by a large saddle-splay constant K24.
The dispersion of spherical particles in a nematic liquid crystal is always a challenge to experi-

mentalists. The clearest results are achieved in inverted nematic emulsions [182,179,183,153,184].
However, alternative experiments with silica or latex spheres do also exist [181,188,189,153,
180,98] and produce impressive results [97]. We hope that the summary of our research stimu-
lates further experiments which probe di9erent liquid crystals as a host >uid [180], manipulate
the anchoring strength [153,97,98], and investigate the e9ect of external 0elds [97,98].

5. Two-particle interactions

To understand the properties of, e.g., multi-droplet emulsions, we need to determine the
nature of particle–particle interactions. These interactions are mediated by the nematic liquid
crystal in which they are embedded and are in general quite complicated. Since interactions
are determined by distortions of the director 0eld, there are multi-body as well as two-body
interactions. We will content ourselves with calculations of some properties of the e9ective
two-particle interaction. To determine the position-dependent interaction potential between two
particles, we should solve the Euler–Lagrange equations, as a function of particle separation,
subject to the boundary condition that the director be normal to each spherical object. Solving
completely these non-linear equations in the presence of two particles is even more complicated
than solving them with one particle, and again we must resort to approximations. Fortunately,
interactions at large separations are determined entirely by the far-0eld distortions and the
multipole moments of an individual topological dipole or Saturn ring, which we studied in
Section 4.1. The interactions can be derived from a phenomenological free energy. We will
present such an approach in this section [190,182,140].

5.1. Formulating a phenomenological theory

In Section 4, we established that each spherical particle creates a hyperbolic hedgehog to
which it binds tightly to create a stable topological dipole. The original spherical inclusion
is described by three translational degrees of freedom. Out of the nematic it draws a hedge-
hog, which itself has three translational degrees of freedom. The two combine to produce a
dipole with six degrees of freedom, which can be parametrized by three variables specifying
the position of the particle, two angles specifying the orientation of the dipole, and one vari-
able specifying the magnitude of the dipole. As we have seen, the magnitude of the dipole
does not >uctuate much and can be regarded as a constant. The direction of the dipole is
also fairly strongly constrained. It can, however, deviate from the direction of locally preferred
orientation (parallel to a local director to be de0ned in more detail below) when many par-
ticles are present. The particle–defect pair is in addition characterized by its higher multipole
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moments. The direction of the principal axes of these moments is speci0ed by the direction of the
dipole as long as director con0gurations around the dipole remain uniaxial. The magnitudes of
all the uniaxial moments like the strengths p and c of the dipole and quadrupole moment (see
Section 4.1) are energetically 0xed, as we have shown in Section 4.2. When director con0gura-
tions are not uniaxial, the multipole tensors will develop additional components, which we will
not consider here. We can thus parametrize topological dipoles by their position and orientation
and a set of multipole moments, which we regard as 0xed. Let e! be the unit vector specifying
the direction of the dipole moment associated with droplet !. Its dipole and quadrupole mo-
ments are then p!=pe! and c!= c(e!⊗ e!−1=3), where p and c are the respective magnitudes
of the dipole and quadrupole moments calculated, e.g., by analytical means in Section 4.2.
The symbol ⊗ means tensor product, and 1 is the second-rank unit tensor. Note, that this
approach also applies to the Saturn-ring and surface-ring con0guration but with a vanishing
dipole moment p = 0. It even applies to particles with tangential boundary conditions where
two surfaces defects, called boojums [145,26,120], are located at opposite points of the sphere
and where the director 0eld possesses a uniaxial symmetry, too. We now introduce dipole- and
quadrupole-moment densities, P(r) and C(r), in the usual way. Let r! denote the position of
droplet !, then

P(r) =
∑
!

p!�(r − r!) and C(r) =
∑
!

c!�(r − r!) : (5.1)

In the following, we construct an e9ective free energy for director and particles valid at length
scales large compared to the particle radius. At these length scales, we can regard the spheres
as point objects (as implied by the de0nitions of the densities given above). At each point in
space, there is a local director n(r) along which the topological dipoles or, e.g., the Saturn rings
wish to align. In the more microscopic picture, of course, the direction of this local director
corresponds to the far-0eld director n0. The e9ective free energy is constructed from rotationally
invariant combinations of P, C , n, and the gradient operator ∇ that are also even under n→ −n.
It can be expressed as a sum of terms

F = Fel + Fp + FC + Falign ; (5.2)

where Fel is the Frank free energy, Fp describes interactions between P and n, FC describes
interactions between C and n involving gradient operators, and

Falign =−D
∫
d3r Cij(r)ni(r)nj(r) =−DQ

∑
!

{[e! ·n(r!)]2 − 1=3} (5.3)

forces the alignment of the axes e! along the local director n(r!). The leading contribution to
Fp is identical to the treatment of the >exoelectric e9ect in a nematic [147,51]

Fp = 4�K
∫
d3r[− P ·n(∇·n) + :P ·(n ×∇× n)] ; (5.4)

where : is a material-dependent unitless parameter. The leading contribution to FC is

FC = 4�K
∫
d3r[(∇·n)n ·∇(niCijnj) +∇(niCijnj) ·(n ×∇× n)] : (5.5)

There should also be terms in FC like Cij∇kni∇knj. These terms can be shown to add contribu-
tions to the e9ective two-particle interaction that are higher order in separation than those arising
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from Eq. (5.5). One coeNcient in Fp and all coeNcients in FC are 0xed by the requirement
that the phenomenological theory yields the far 0eld of one particle given by Eq. (4.2) (see
next subsection). Eq. (5.5) is identical to that introduced in Ref. [190] to discuss interactions
between Saturn rings, provided niCijnj is replaced by a scalar density 6(r) =

∑
! �(r− r!). The

two energies are absolutely equivalent to leading order in the components n3 of n perpendicular
to n0 provided all e! are restricted to be parallel to n0.
Since P prefers to align along the local director n, the dipole-bend coupling term in Eq. (5.4)

can be neglected to leading order in deviations of the director from uniformity. The −P ·n(∇·n)
term in Eq. (5.4) shows that dipoles aligned along n create local splay as is evident from the
dipole con0guration depicted in Fig. 12. In addition, this term says that dipoles can lower
their energy by migrating to regions of maximum splay while remaining aligned with the local
director. Experiments on multiple nematic emulsions [182,183] support this conclusion. Indeed,
the coupling of the dipole moment to a strong splay distortion explains the chaining of water
droplets in a large nematic drop whose observation we reported in Section 3.2. We return to
this observation in Section 7.

5.2. E<ective pair interactions

In the following we assume that the far-0eld director n0 and all the multipole moments of
the particles point along the z axis, i.e., e! = ez = n0. Hence, we are able to write the dipole
and quadrupole densities as

P(r) = P(r)n0 and C(r) = 3
2C(r)(n0 ⊗ n0 − 1=3) ; (5.6)

where P(r) and C(r) can be both positive and negative. We are interested in small deviations
from n0; n = (nx; ny; 1), and formulate the e9ective energy of Eq. (5.2) up to harmonic order
in n3:

F = K
∫
d3r[ 12(∇n3)2 − 4�P93n3 + 4�(9zC)93n3] : (5.7)

The dipole-bend coupling term of Eq. (5.4) does not contribute because P is aligned along the
far-0eld director. The Euler–Lagrange equations for the director components are

∇2n3 = 4�93[P(r)− 9zC(r)] ; (5.8)

which possess the solution

n3(r) =−
∫
d3r′

1
|r − r′|9

′
3[P(r

′)− 9′zC(r′)] : (5.9)

For a single droplet at the origin, P(r) = p�(r) and C(r) = 2
3c�(r), and the above equation

yields exactly the far 0eld of Eq. (4.2). This demonstrates the validity of our phenomenological
approach.
Particles create far-0eld distortions of the director, which to leading order at large distances

are determined by Eq. (5.8). These distortions interact with the director 0elds of other particles
which leads to an e9ective particle–particle interaction that can be expressed to leading order
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Fig. 26. A chain of three topological dipoles formed due to their dipolar interaction.

as pairwise interactions between dipole and quadrupole densities. Using Eq. (5.9) in Eq. (5.7),
we obtain

F
4�K =

1
2

∫
d3r d3r′[P(r)VPP(r − r′)P(r′) + C(r)VCC(r − r′)C(r′)

+VPC(r − r′)][C(r)P(r′)− P(r)C(r′)] ; (5.10)

with

VPP(r)= 9393
1
r
=
1
r3
(1− 3 cos3 5)

VCC(r)=−92z9393
1
r
=
1
r5
(9− 90 cos2 5+ 105 cos4 5)

VPC(r)= 9z9393
1
r
=
cos 5
r4

(15 cos2 5− 9) ; (5.11)

where 5 is the angle enclosed by the separation vector r and n0. The interaction energy between
droplets at positions r and r′ with respective dipole and quadrupole moments p;p′; c; and c′ is
thus

U (R) = 4�K
[
pp′VPP(R) +

4
9
cc′VCC(R) +

2
3
(cp′ − c′p)VPC(R)

]
; (5.12)

where R= r− r′. The leading term in the potential U (R) is the dipole–dipole interaction which
is identical to the analogous problem in electrostatics. Minimizing it over the angle 5, one 0nds
that the dipoles prefer to form chains along their axes, i.e., pp′¿ 0; 5= 0; �. Such a chain of
dipoles is illustrated in Fig. 26. It is similar to con0gurations seen in other dipolar systems such
as magnetorheological >uids and in magnetic emulsions under the in>uence of an external 0eld
[90,133]. The chaining was observed by Poulin et al. in inverted emulsions [179,183] or in a
suspension of micron-size latex particles in a lyotropic discotic nematic [180]. Both systems
were placed in a thin rectangular cell of approximate dimensions 20 �m × 1 cm × 1 cm. The
upper and lower plates were treated to produce tangential boundary conditions. Thus the total
topological charge in the cell was zero. The dipolar forces were measured recently by a method
introduced by Poulin et al. [179]. When small droplets are 0lled with a magnetorheological
>uid instead of pure water, a small magnetic 0eld of about 100G, applied perpendicular to the
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chain axis, induces parallel magnetic dipoles. Since they repel each other, the droplets in the
chain are forced apart. When the magnetic 0eld is switched o9, the droplets move towards each
other to reach the equilibrium distance. In a chain of two moving droplets, the dipolar force on
one droplet has to be balanced by the Stokes drag,

24�Kpp
′

R4
= 6�)e9av ; (5.13)

where v is the velocity of one particle, and )e9 is an e9ective viscosity, which we will address
in Section 6. Inertial e9ects can be neglected since the movement is overdamped. By measuring
the velocity as a function of R, Poulin et al. could show that the origin of the attractive force
is indeed of dipolar nature down to a separation of approximately 4a. Furthermore, they found
that the prefactor of the dipolar force scales as a4, as expected since both the dipole moments
p and p′ scale as a2 (see Section 4.1). In Section 6 we will calculate the Stokes drag of a
spherical particle.
If p;p′ = 0, the quadrupolar interaction is dominant. A minimization over 5 predicts that

the quadrupoles should chain under an angle of 5 = 49◦ [190]. In experiments with tangential
boundary conditions at the droplet surface, where a quadrupolar structure with two opposite
surface defects (boojums) forms, the chaining occurred under an angle of 5=30◦, probably due
to short-range e9ects [183]. A similar observation was made in a suspension of 50 nm latex
particles in a lyotropic discotic nematic [153], where one expects a surface-ring con0guration
because of the homeotropic surface anchoring (see Section 4.3.4).
Finally, we discuss the coupling between dipoles and quadrupoles in Eq. (5.12). Their mo-

ments scale, respectively, as a2 or a3. The coupling is only present when the particles have
di9erent radii. Furthermore, for 0xed angle 5, the sign of the interaction depends on whether
the small particle is on the right or left side of the large one. With this rather subtle e9ect,
which is not yet measured, we close the section about two-particle interactions.

6. The Stokes drag of spherical particles

In Section 2.3 we introduced the Ericksen–Leslie equations that govern the hydrodynamics
of a nematic liquid crystal. Due to the director as a second hydrodynamic variable besides
the >uid velocity, interesting new dynamical phenomena arise. With the MiZesowicz viscosities
and Helfrich’s permeation, we presented two of them in Section 2.3. Here we deal with the
>ow of a nematic around a spherical particle in order to calculate the Stokes drag, which is
a well-known quantity for an isotropic liquid [217,202]. 2 Via the celebrated Stokes–Einstein
relation [63–65], it determines the di9usion constant of a Brownian particle, and it is, therefore,
crucial for a 0rst understanding of the dynamics of colloidal suspensions [202].
In Section 6.1 the existing work on the Stokes drag, which has a long-standing tradition

in liquid crystals, is reviewed. Starting from the Ericksen–Leslie equations, we introduce the
theoretical concepts for its derivation in Section 6.2. We calculate the Stokes drag for three
director con0gurations; a uniform director 0eld, the topological dipole, and the Saturn-ring

2 We cite here on purpose the excellent course of Sommerfeld on continuum mechanics. An English edition of
his lectures on theoretical physics is available.
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structure. Since a full analytical treatment is not possible, we have performed a numerical
investigation. A summary of its details is presented in Section 6.3. Finally, we discuss the
results and open problems in Section 6.4.

6.1. Motivation

Due to the complexity of the Ericksen–Leslie equations, only few examples with an analytical
solution exist, e.g., the >ow between two parallel plates, which de0nes the di9erent MiZesowicz
viscosities [47], the Couette >ow [8,46], the Poiseuille >ow [7], which was 0rst measured by
Cladis et al. [234], or the back >ow [176]. Besides the exploration of new e9ects, resulting from
the coupling between the velocity and director 0eld, solutions to the Ericksen–Leslie equations
are also of technological interest. They are necessary to determine the switching times of liquid
crystal displays.
A common way to measure viscosities of liquids is the falling-ball method, where the

velocity of the falling particle is determined by a balance of the gravitational, the buoyancy,
and Stokes’s friction force. Early experiments in nematic liquid crystals measured the tempera-
ture and pressure dependence of the e9ective viscosity )e9 in the Stokes drag [234,122]. Cladis
et al. [234] argued that )e9 is close to the MiZesowicz shear viscosity )b, i.e., to the case where
the >uid is >owing parallel to the director (see Fig. 3 in Section 2.3). Nearly twenty years later,
Poulin et al. used the Stokes drag to verify the dipolar force between two topological dipoles
in inverted nematic emulsions [179]. BUottger et al. [19] observed the Brownian motion of par-
ticles above the nematic-isotropic phase transition. Measuring the di9usion constant with the
help of dynamic light scattering, they could show that close to the phase transition the e9ective
viscosity in the Stokes drag increases due to surface-induced nematic order close to the particle.
It is obvious that the hydrodynamic solution for the >ow of a nematic liquid crystal around a

particle at rest, which is equivalent to the problem of a moving particle, presents a challenge to
theorists. Diogo [57] assumed the velocity 0eld to be the same as the one for an isotropic >uid
and calculated the drag force for simple director con0gurations. He was interested in the case
where the viscous forces largely exceed the elastic forces of director distortions, i.e., Ericksen
numbers much larger than one, as we shall explain in the next subsection. Roman and Terentjev,
concentrating on the opposite case, obtained an analytical solution for the >ow velocity in a
spatially uniform director 0eld, by an expansion in the anisotropy of the viscosity [194]. Heuer
et al. presented analytical and numerical solutions for both the velocity 0eld and the Stokes
drag again assuming a uniform director 0eld [112,105]. They were 0rst investigating a cylinder
of in0nite length [104]. Ruhwandl and Terentjev allowed for a non-uniform but 0xed director
con0guration, and they numerically calculated the velocity 0eld and the Stokes drag of a cylinder
[198] or a spherical particle [199]. The particle was surrounded by the Saturn-ring con0guration
(see Fig. 12 of Section 4.1), and the cylinder was accompanied by two disclination lines. Billeter
and Pelcovits used molecular dynamics simulations to determine the Stokes drag of very small
particles [10]. They observed that the Saturn ring is strongly deformed due to the motion of the
particles. The experiments on inverted nematic emulsions [182,179] motivated us to perform
analogous calculations for the topological dipole [228], which we present in the next subsections.
Recently, Chono and Tsuji performed a numerical solution of the Ericksen–Leslie equations
around a cylinder determining both the velocity and director 0eld [32]. They could show that
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the director 0eld strongly depends on the Ericksen number. However, for homeotropic anchoring
their director 0elds do not show any topological defects required by the boundary conditions.
The Stokes drag of a particle surrounded by a disclination ring strongly depends on the

presence of line defects. There exist a few studies, which determine both experimentally [37]
and theoretically [107,49,203] the drag force of a moving disclination. In the multi-domain
cell, a novel liquid crystal display, the occurrence of twist disclinations is forced by boundary
conditions [206,205,192]. It is expected that the motion of these line defects strongly determines
the switching time of the display.

6.2. Theoretical concepts

We 0rst review the Stokes drag in an isotropic liquid and then introduce our approach for
the nematic environment.

6.2.1. The Stokes drag in an isotropic >uid
The Stokes drag in an isotropic >uid follows from a solution of the Navier–Stokes equations.

Instead of considering a moving sphere, one solves the equivalent problem of the >ow around a
sphere at rest [217]. An incompressible >uid (div C=0) and a stationary velocity 0eld (9C=9t=0)
are assumed, so that the 0nal set of equations reads

div C= 0 and −∇p′ + divT ′ = 0 : (6.1)

In an isotropic >uid the viscous stress tensor T ′ is proportional to the symmetrized velocity gra-
dient A, T ′=2)A, where ) denotes the usual shear viscosity. We have subdivided the pressure
p=p0 +p′ in a static (p0) and a hydrodynamic (p′) part. The static pressure only depends on
the constant mass density % and, therefore, does not appear in the momentum-balance equation
of the set (6.1). The hydrodynamic contribution p′ is a function of the velocity. It can be
chosen zero at in0nity. Furthermore, under the assumption of creeping >ow, we have neglected
the non-linear velocity term in the momentum-balance equation resulting from the convective
part of the total time derivative dC=dt. That means, the ratio of inertial (%v2=a) and viscous
()v=a2) forces, which de0nes the Reynolds number Re = %va=), is much smaller than one. To
estimate the forces, all gradients are assumed to be of the order of the inverse particle radius
a−1, the characteristic length scale of our problem. Eqs. (6.1) are solved analytically for the
non-slip condition at the surface of the particle [C(r = a) = 0], and for a uniform velocity C∞
at in0nity. Once the velocity and pressure 0elds are known, the drag force FS follows from
an integration of the total stress tensor −p1 + T ′ over the particle surface. An alternative
method demands that the dissipated energy per unit time,

∫
(T ′ ·A) d3r, which we introduced in

Eq. (2.27) of Section 2.3, should be FSv∞ [11]. The 0nal result is the famous Stokes formula
for the drag force:

FS = %v∞ with %= 6�)a : (6.2)

The symbol % is called the friction coeNcient. The Einstein–Stokes relation relates it to the
di9usion constant D of a Brownian particle [63–65]:

D=
kBT
6�)a ; (6.3)

where kB is the Boltzmann constant and T is temperature.
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We can also calculate the Stokes drag for a 0nite spherical region of radius r= a=' with the
particle at its center [228]. The result is

FS = %'v' with %' = 6�)a
1− 3'=2 + '3 − '5=2
(1− 3'=2 + '3=2)2 ; (6.4)

where v' denotes the uniform velocity at r = a='. The correction term is a monotonically in-
creasing function in ' on the interesting interval [0; 1]. Hence, the Stokes drag increases when
the particle is con0ned to a 0nite volume. For '= 1=32 the correction is about 5%.

6.2.2. The Stokes drag in a nematic environment
To calculate the Stokes drag in a nematic environment, we have to deal with the Ericksen–

Leslie equations, which couple the >ow of the >uid to the director motion. We do not attempt
to solve these equations in general. Analogous to the Reynolds number, we de0ne the Ericksen
number [49] as the ratio of viscous ()v∞=a2) and elastic (K=a3) forces in the momentum balance
of Eq. (2.18):

Er =
)v∞a
K

: (6.5)

The elastic forces are due to distortions in the director 0eld, where K stands for an average Frank
constant. In the following, we assume Er�1, i.e., the viscous forces are too weak to distort
the director 0eld, and we will always use the static director 0eld for C= 0 in our calculations.
The condition Er�1 constrains the velocity v∞. Using typical values of our parameters, i.e.,
K = 10−6 dyn; )= 0:1 P, and a= 10 �m, we 0nd

v∞�100
�m
s
: (6.6)

Before we proceed, let us check for three cases if this constraint is ful0lled. First, in the
measurements of the dipolar force by Poulin et al., the velocities of the topological dipole are
always smaller than 10 �m=s [179]. Secondly, in a falling-ball experiment the velocity v of
the falling particle is determined by a balance of the gravitational, the buoyancy, and Stokes’s
friction force, i.e., 6�)e9av= (4�=3)a3(%− %>)g, and we obtain

v=
2
9
(%− %>)a2g

)e9
→ 10

�m
s
: (6.7)

To arrive at the estimate, we choose )e9 =0:1 P and a=10 �m. We take %=1g=cm3 as the mass
density of the particle and %− %> = 0:01 g=cm3 as its di9erence to the surrounding >uid [202].
Thirdly, we consider the Brownian motion of a suspended particle. With the time t = a2=6D
that the particle needs to di9use a distance equal to the particle radius a [202], we de0ne an
averaged velocity

v=
a
t
=
6D
a

→ 10−3
�m
s
: (6.8)

The estimate was calculated using the Stokes–Einstein relation of Eq. (6.3) with thermal energy
kBT = 4× 10−14 erg at room temperature and the same viscosity and particle radius as above.
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After we have shown that Er�1 is a reasonable assumption, we proceed as follows. We
0rst calculate the static director 0eld around a sphere from the balance of the elastic torques,
n × h0 = 0 [see Eqs. (2.19) and (2.25)]. It corresponds to a minimization of the free energy.
For C = 0, the static director 0eld de0nes a static pressure p0 via the momentum balance,
−∇p0 + divT0 = 0, where the elastic stress tensor T0 depends on the gradient of n [see Eqs.
(2.18) and (2.11)]. If we again divide the total pressure into its static and hydrodynamic part,
p=p0+p′, the velocity 0eld is determined from the same set of equations as in (6.1), provided
that we employ the viscous stress tensor T ′ of a nematic liquid crystal [see Eq. (2.22)]. In the
case of an inhomogeneous director 0eld, both the di9erent shear viscosities and the rotational
viscosity %1, discussed in Section 2.3, contribute to the Stokes drag.
In general, the friction force FS does not point along C∞, and the friction coeNcient is now

a tensor �. In the following, all our con0gurations are rotationally symmetric about the z axis,
and the Stokes drag assumes the form

FS = �C∞ with �= %⊥1+ (%‖ − %⊥)ez ⊗ ez : (6.9)

There only exist two independent components %‖ and %⊥ for a respective >ow parallel or
perpendicular to the symmetry axis. In these two cases, the Stokes drag is parallel to C∞.
Otherwise, a component perpendicular to C∞, called lift force, appears. In analogy with the
isotropic >uid, we introduce e9ective viscosities )‖e9 and )

⊥
e9 via

%‖ = 6�)
‖
e9a and %⊥ = 6�)⊥e9a : (6.10)

It is suNcient to determine the velocity and pressure 0elds for two particular geometries with
C∞ either parallel or perpendicular to the z axis. Then, the friction coeNcients are calculated
with the help of the dissipated energy per unit time [see Eq. (2.27)] [11,57]:

F‖=⊥
S v∞ =

∫
(T ′ ·A+ h′ ·N) d3r : (6.11)

It turns out that the alternative method via an integration of the stress tensor at the surface
of the particle is numerically less reliable. Note that the velocity and pressure 0elds for an
arbitrary angle between C∞ and ez follow from superpositions of the solutions for the two
selected geometries. This is due to the linearity of our equations.
It is clear that the Brownian motion in an environment with an overall rotational symmetry is

governed again by two independent di9usion constants. The generalized Stokes–Einstein formula
of the di9usion tensor D takes the form

D=D⊥1+ (D‖ −D⊥)ez ⊗ ez with D‖=⊥ =
kBT
%‖=⊥

: (6.12)

At the end, we add some critical remarks about our approach which employs the static director
0eld. From the balance equation of the elastic and viscous torques [see Eqs. (2.19), (2.25) and
(2.26)], we derive that the change �n of the director due to the velocity C is of the order of
the Ericksen number: �n ∼ Er. This adds a correction �T0 to the elastic stress tensor T0 in
the momentum balance equation. In the case of a spatially uniform director 0eld, the correction
�T0 is by a factor Er smaller than the viscous forces, and it can be neglected. However, for
a non-uniform director 0eld, it is of the same order as the viscous term, and, strictly speaking,
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should be taken into account. Since our problem is already very complex, even when the
directors are 0xed, we keep this approximation for a 0rst approach to the Stokes drag. How
the friction force changes when the director 0eld is allowed to relax, must be investigated by
even more elaborate calculations. Two remarks support the validity of our approach. First, far
away from the sphere, �n has to decay at least linearly in 1=r, and �T0 is negligible against the
viscous forces. Secondly, the non-linear term in the Navier–Stokes equations usually is omitted
for Re�1. However, whereas the friction and the pressure force for the Stokes problem decay
as 1=r3, the non-linear term is proportional to 1=r2, exceeding the 0rst two terms in the far0eld.
Nevertheless, performing extensive calculations, Oseen could prove that the correction of the
non-linear term to the Stokes drag is of the order of Re [217]. One might speculate that the full
relaxation of the director 0eld introduces a correction of the order of Er to the Stokes drag.

6.3. Summary of numerical details

In this subsection we only review the main ideas of our numerical method. A detailed account
will be given in Ref. [228].
The numerical investigation is performed on a grid which is de0ned by modi0ed spheri-

cal coordinates. Since the region outside the spherical particle is in0nitely extended, we em-
ploy a reduced radial coordinate �= a=r. The velocity and director 0elds are expressed in the
local spherical coordinate basis. With this choice of coordinates, the momentum balance of
Eqs. (6.1) with the viscous stress tensor of a nematic becomes very complex. We, therefore,
used the algebraic program Maple to formulate it.
The two equations in (6.1) are treated by di9erent numerical techniques. Given an initial

velocity 0eld, the momentum balance including the inertial term 9C=9t can be viewed as a re-
laxation equation towards the stationary velocity 0eld, which we aim to determine. The Newton–
Gauss–Seidel method, introduced in Section 2.2, provides an e9ective tool to implement this
relaxation. Employing the discretized version of the momentum balance equation, the velocity
at the grid point r relaxes according to

vnewi (r) = voldi (r)−
[−∇p′ + divT ′]i

[9(−∇p′ + divT)]i=9vi(r)
: (6.13)

Note that the denominator can be viewed as the inverse of a variable time step for the 0ctitious
temporal dynamics of C.
A relaxation equation for the pressure involving div C = 0 is motivated by the method of

arti0cial compressibility [33]. Let us consider the complete mass-balance equation. For small
variations of the density, we obtain

9p
9t =− %

c2
div C with c=

√
9p
9% : (6.14)

The quantity c denotes the sound velocity for constant temperature, and c2=% is the isothermal
compressibility. In discretized form we have

pnew = pold − %
c2
Vt div C : (6.15)



H. Stark / Physics Reports 351 (2001) 387–474 433

Note that the reduced 0ctitious time step %Vt=c2 cannot be chosen according to the Newton–
Gauss–Seidel method since div C does not contain the pressure p. Instead, it should be as large
as possible to speed up the calculations. In Ref. [187] upper bounds are given beyond which
the numerical scheme becomes unstable.
To obtain the friction coeNcient %‖, an e9ective two-dimensional problem has to be solved

due to the rotational symmetry of the director con0gurations about the z axis. In the case
of %⊥ (C∞⊥ez), the velocity 0eld possesses at least two mirror planes which are perpendic-
ular to each other and whose line of intersection is the z axis. As a result, the necessary
three-dimensional calculations can be reduced to one quadrant of the real space. A description
of all the boundary conditions will be presented in Ref. [228].
The director 0elds for the topological dipole and the Saturn ring are provided by the respective

ansatz functions of Eqs. (22) and (33) in Ref. [140]. The parameters of minimum free energy
are chosen. In Section 4 we showed that these ansatz functions give basically the same results
as the numerical investigation.
We checked our programs in the isotropic case. It turned out that the three-dimensional

version is not completely stable for an in0nitely extended integration area. We therefore solved
Eqs. (6.1) in a 0nite region of reduced radius r=a = 1=' = 32. For ' = 1=32, our programs
reproduced the isotropic Stokes drag, calculated from Eq. (6.4), with an error of 1%.

6.4. Results, discussion, and open problems

We begin with an investigation of the stream line patterns, discuss the e9ective viscosities,
and formulate some open problems at the end.

6.4.1. Stream line patterns
In Fig. 27 we compare the stream line patterns around a spherical particle for an isotropic

liquid and a spatially uniform director 0eld parallel to C∞. A uniform n can be achieved by weak
surface anchoring and application of a magnetic 0eld with a magnetic coherence length smaller
than the particle radius. In the isotropic >uid the bent stream lines occupy more space around the
particle, whereas for a uniform director con0guration they seem to follow the vertical director
0eld lines as much as possible. This can be understood from a minimum principle. In Section 2.3
we explained that a shear >ow along the director possesses the smallest shear viscosity, called
)b. Hence, in such a geometry the smallest amount of energy is dissipated. Indeed, for a uni-
form director 0eld, one can derive the momentum balance from a minimization of the dissipation
function stated in Eq. (2.27) [104]. A term −2p div C has to be added because of the incom-
pressibility of the >uid. It turns out that the Lagrange multiplier −2p is determined by the
pressure p.
In the case of the topological dipole parallel to C∞, we observe a clear asymmetry in the

stream lines as illustrated in Fig. 28. The dot indicates the position of the point defect. It breaks
the mirror symmetry of the stream line pattern, which exists, e.g., in an isotropic liquid relative to
a plane perpendicular to the vertical axis. In the far0eld of the velocity, the splay deformation in
the dipolar director con0guration is clearly recognizable. Since we use the linearized momentum
balance in C, the velocity 0eld is the same no matter if the >uid >ows upward or downward.
The stream line pattern of the Saturn ring [see Fig. 29 (right)] exhibits the mirror symmetry,
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Fig. 27. Stream line pattern around a spherical particle for an isotropic liquid (right) and a uniform director 0eld
parallel to C∞ (left).

Fig. 28. Stream line pattern around a spherical particle for an isotropic liquid (right) and the topological dipole
parallel to C∞ (left).

and the position of the ring disclination is visible by a dip in the stream line close to the
equator of the sphere.
If C∞ is perpendicular to the dipole axis, the missing mirror plane of the dipole con0guration

is even more pronounced in the stream line pattern. It is illustrated in Fig. 30, where the point
defect is indicated by a dip in the stream line. Although the pattern resembles the one of the
Magnus e9ect [217], symmetry dictates that F⊥

S ‖C∞. A lift force perpendicular to C∞ does not
exist. We 0nd a non-zero viscous torque acting on the particle whose direction for a >uid >ow
from left to right is indicated in Fig. 30. Symmetry allows such a torque M since the cross
product of the dipole moment p and C∞ gives an axial or pseudovector M ˙ p × C∞. In the
Saturn-ring con0guration a non-zero dipole moment and, therefore, a non-zero torque cannot
occur.

6.4.2. E<ective viscosities
In Table 1 we summarize the e9ective viscosities of the Stokes drag, de0ned in Eq. (6.10), for

a uniform director 0eld, the dipole and the Saturn-ring con0guration. The values are calculated
for the two compounds MBBA and 5CB. For a reference, we include the three MiZesowicz
viscosities. In the case of C∞ parallel to the symmetry axis of the three con0gurations, we
might expect that )‖e9 is close to )b as argued by Cladis et al. [234]. For a uniform director
0eld, )‖e9 exceeds )b by 30% or 60%, respectively. The increase originates in the stream lines
bending around the particle. The e9ective viscosity )‖e9 of the dipole and the Saturn ring are
larger than )b by an approximate factor of two. In addition to the bent stream lines, there exist
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Fig. 29. Stream line pattern around a spherical particle for the Saturn ring (right) and the topological dipole (left)
with their respective symmetry axis parallel to C∞.

Fig. 30. Stream line pattern around a spherical particle for the topological dipole perpendicular to C∞.

Table 1
E9ective viscosities of the Stokes drag for the two compounds MBBA and 5CB and for three di9erent director
con0gurations. As a reference, the three MiZesowicz viscosities are included

MBBA: )a = 0:416 P; )b = 0:283 P; )c = 1:035 P 5CB: )a = 0:374 P; )b = 0:229 P; )c = 1:296 P

Uniform n Dipole Saturn ring Uniform n Dipole Saturn ring

)‖e9 (P) 0.380 0.517 0.493 0.381 0.532 0.501
)⊥e9 (P) 0.684 0.767 0.747 0.754 0.869 0.848
)⊥e9 =)

‖
e9 1.80 1.48 1.51 1.98 1.63 1.69

strong director distortions close to the particle which the >uid has to >ow through constantly
changing the local direction of the moving molecules. Recalling our discussion of the permeation
in Section 2.3, a contribution from the rotational viscosity %1 arises which does not exist in a
uniform director 0eld. In all three cases, we 0nd )‖e9 either close to or larger than )a, so that )b is
not the only determining quantity of )‖e9 , as argued by Cladis et al. [234]. For C∞ perpendicular
to the symmetry axis, )e9⊥ assumes a value between )a and )c, which is understandable since
the >ow velocity is mainly perpendicular to the director 0eld.
The ratio )⊥e9 =)

‖
e9 for the uniform director 0eld is the largest since the extreme cases of a

respective >ow parallel or perpendicular to the director 0eld is realized the best in this con0g-
uration. Furthermore, both the dipole and the Saturn ring exhibit nearly the same anisotropy,
and we conclude that they cannot be distinguished from each other in a falling-ball experiment.
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The ratios )⊥e9 =)
‖
e9 that we determine for the Saturn ring and the uniform director 0eld in the

case of the compound MBBA agree well with the results of Ruhwandl and Terentjev who 0nd
)⊥e9 =)

‖
e9 |uniform = 1:69 and )⊥e9 =)‖e9 |Saturn = 1:5 [199]. However, they di9er from the 0ndings of

Billeter and Pelcovits in their molecular dynamics simulations [10].
In the ansatz function of the dipolar con0guration, we vary the separation rd between the

hedgehog and the center of the particle. Both the e9ective viscosities increase with rd since the
non-uniform director 0eld with its strong distortions occupies more space. However, the ratio
)⊥e9 =)

‖
e9 basically remains the same. For the Saturn ring, )

‖
e9 increases stronger with the radius

rd than does )⊥e9 . This seems to be reasonable since a >ow perpendicular to the plane of the
Saturn ring experiences more resistance than a >ow parallel to the plane. As a result, )⊥e9 =)

‖
e9

decreases when the ring radius rd is enlarged.

6.4.3. Open problems
One should try to perform a complete solution of the Ericksen–Leslie equations including a

relaxation of the static director 0eld for C 	= 0. In the case of Er�1, a linearization in the small
deviation �n from the static director 0eld would suNce. Such a procedure helps to gain insight
into several open problems. First, it veri0es or falsi0es the hypothesis that the correction to the
Stokes drag is of the order of Er. Secondly, the Stokes drag of the topological dipole is the same
whether the >ow is parallel or anti-parallel to the dipole moment. This is also true for an object
with a dipolar shape in an isotropic >uid. If such an object is slightly turned away from its
orientation parallel to C∞, it will experience a viscous torque and either relax back or reverse its
direction to 0nd its absolute stable orientation. The topological dipole will not turn around since
it experiences an elastic torque towards its initial direction, as explained in Section 5.1. Never-
theless, a full solution of the Ericksen–Leslie equations would show whether and how much the
dipole deviates from its preferred direction under the in>uence of a velocity 0eld. It would also
clarify its orientation when C∞ is perpendicular to the dipolar axis. Furthermore, we speculate
that the non-zero viscous torque, discussed in Section 6.4.1, is cancelled by elastic torques.
Preliminary results [228] for the two-dimensional problem with the relaxation of the director

0eld included show that the Stokes drag of the dipolar con0guration varies indeed linearly in
Er for Er¡ 1. Furthermore, it is highly non-linear depending on C∞ being either parallel or
anti-parallel to the topological dipole.
The Stokes drag of particles in a nematic environment still presents a challenging problem

to theorists. On the other hand, clear measurements of, e.g., the anisotropy in Stokes’s friction
force are missing.

7. Colloidal dispersions in complex geometries

In this section we present a numerical investigation of water droplets in a spherically con0ned
nematic solvent. It is motivated by experiments on multiple nematic emulsions which we re-
ported in Section 3.2. However, it also applies to solid spherical particles. Our main purpose is
to demonstrate that the topological dipole provides a key unit for the understanding of multiple
emulsions. In Sections 7.1–7.3 we 0rst state the questions and main results of our investigation.
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Fig. 31. Scenario to explain the chaining of water droplets in a large nematic drop. The right water droplet and its
companion hyperbolic hedgehog form a dipole, which is attracted by the strong splay deformation around the droplet
in the center (left picture). The dipole moves towards the center until at short distances the repulsion mediated by
the point defect sets in (middle picture). A third droplet moves to the region of maximum splay to form a linear
chain with the two other droplets.

Then we de0ne the geometry of our problem and summarize numerical details. In particular,
we employ the numerical method of 0nite elements [227] which is most suitable for non-trivial
geometries. Finally we present our results in detail and discuss them. The last subsection con-
tains an analytical treatment of the twist transition of a radial director 0eld enclosed between
two concentric spheres. It usually occurs when the inner sphere is not present. We perform a
linear stability analysis and thereby explain the observation that a small water droplet at the
center of a large nematic drop suppresses the twisting.

7.1. Questions and main results

In our numerical investigation we demonstrate that the dipolar con0guration formed by one
spherical particle and its companion hyperbolic point defect also exists in more complex geome-
tries, e.g., nematic drops. This provides an explanation for the chaining reported in Section 3.2
and in Refs. [182,183]. One water droplet 0ts perfectly into the center of a large nematic drop,
which has a total topological charge +1. Any additional water droplet has to be accompanied
by a hyperbolic hedgehog in order not to change the total charge. If the dipole forms (see
Fig. 31, left), it is attracted by the strong splay deformation in the center, as predicted by the
phenomenological theory of Section 5.1 and in Refs. [182,140], until the short-range repulsion
mediated by the defect sets in (see Fig. 31, middle). Any additional droplet seeks the region of
maximum splay and forms a linear chain with the two other droplets. In the following we present
a detailed study of the dipole formation in spherical geometries. For example, when the two wa-
ter droplets in the middle picture of Fig. 31 are moved apart symmetrically about the center of
the large drop, the dipole forms via a second-order phase transition. We also identify the dipole
in a bipolar con0guration which occurs for planar boundary conditions at the outer surface of
the nematic drop. Two boojums, i.e., surface defects appear [145,26,120], and the dipole is
attracted by the strong splay deformation in the vicinity of one of them [182,183,140]. Besides
the dipole we 0nd another stable con0guration in this geometry, where the hyperbolic hedgehog
sits close to one of the boojums, which leads to a hysteresis in the formation of the dipole.
In the experiment it was found that the distance d of the point defect from the surface of a

water droplet scales with the radius r of the droplet like d≈ 0:3r [182,183]. In the following we
will call this relation the scaling law. By our numerical investigations, we con0rm this scaling
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Fig. 32. (a) Geometry parameters for two water droplets with respective radii r1 and r2 in a large nematic drop
with radius r3. The system is axially symmetric about the z axis, and cylindrical coordinates 6; z are used. The
coordinates z1; z2, and zd are the respective positions of the two droplets and the hyperbolic hedgehog. The two
distances of the hedgehog from the surfaces of the droplets are d1 and d2. From Ref. [220]. (b) Triangulation of
the integration area (lattice constant: b = 0:495). Between the small spheres a re0ned net of triangles is chosen.
From Ref. [220].

law within an accuracy of ca. 15%, and we discuss the in>uence of the outer boundary of
the large drop. Finally, we show that water droplets can repel each other without a hyperbolic
defect placed between them.

7.2. Geometry and numerical details

We numerically investigate two particular geometries of axial symmetry. The 0rst problem
is de0ned in Fig. 32a. We consider two spherical water droplets with respective radii r1 and
r2 in a large nematic drop with radius r3. The whole system possesses axial symmetry, so that
the water droplets and the hyperbolic hedgehog, indicated by a cross, are located always on
the z axis. We employ a cylindrical coordinate system. The coordinates z1; z2, and zd denote,
respectively, the positions of the centers of the droplets and of the hyperbolic hedgehog on the z
axis. The distances of the hedgehog from the surfaces of the two water droplets are, respectively,
d1 and d2. Then, the quantity d1 + d2 means the distance of the two small spheres, and the
point defect is situated in the middle between them if d1 = d2. We, furthermore, restrict the
nematic director to the (6; z) plane, which means that we do not allow for twist deformations. 3

3 In nematic droplets with homeotropic anchoring a twist in the director 0eld is usually observed (see [26] and
Section 7.4). In Section 4.3.2 we demonstrated that it even appears in the dipole con0guration close to the hyperbolic
hedgehog. However, for the Frank elastic constants of 5CB, the distance of the defect from the surface of the water
droplet di9ers only by 10% if the director 0eld is not allowed to twist. We do not expect a di9erent behavior in the
geometry under consideration in this section. Here, we want to concentrate, as a 0rst step, on the principal features
of the system. Therefore, we neglect twist deformations to simplify the numerics. The same simpli0cation to catch
the main behavior of nematic drops in a magnetic 0eld was used by other authors, see, e.g., [115,114].



H. Stark / Physics Reports 351 (2001) 387–474 439

The director is expressed in the local coordinate basis of the cylindrical coordinate system,
n(6; z)=sin�(6; z)e6+cos�(6; z)ez, where we introduced the tilt angle �. It is always restricted
to the range [−�=2; �=2] to ensure the n → −n symmetry of the nematic phase. At all the
boundaries we assume a rigid homeotropic anchoring of the director, which allows us to omit
any surface term in the free energy. In Ref. [140] it was shown that rigid anchoring is justi0ed
in our system and that any deformation of the water droplets can be neglected.
In the second problem we have only one water droplet insider a large nematic drop. We use

the same coordinates and lengths as described in Fig. 32a, but omit the second droplet. The
anchoring of the director at the outer surface of the large nematic sphere is rigid planar. At the
surface of the small sphere we again choose a homeotropic boundary condition.
Because of the non-trivial geometry of our problem, we decided to employ the method of

0nite elements [227], where the integration area is covered with triangles. We construct a
net of triangles by covering our integration area with a hexagonal lattice with lattice constant
b. Vertices of triangles that only partially belong to the integration area are moved onto the
boundary along the radial direction of the appropriate sphere. As a result, extremely obtuse
triangles occur close to the boundary. We use a relaxation mechanism to smooth out these
irregularities. The 0nal triangulation is shown in Fig. 32b. In the area between the small spheres,
where the hyperbolic hedgehog is situated, the grid is further subdivided to account for the
strong director deformations close to the point defect. The local re0nement helps us to locate
the minimum position of the defect between the spheres within a maximum error of 15% by
keeping the computing time to a reasonable value [220].
In the following, we express the Frank free energy, introduced in Section 2.1, in units of K3a

and denote it by the symbol F̂ . The quantity a is the characteristic length scale of our system,
typically several microns. The saddle-splay term, a pure surface term, is not taken into account.
The Frank free energy is discretized on the triangular net. For details, we refer the reader to
Ref. [220]. To 0nd a minimum of the free energy, we start with a con0guration that already
possesses the hyperbolic point defect at a 0xed position zd and let it relax via the standard
Newton–Gauss–Seidel method [187], which we illustrate in Eq. (2.16) of Section 2.2.
Integrating the free energy density over one triangle yields a line energy, i.e., an energy per

unit length. As a rough estimate for its upper limit we introduce the line tension Fl=(K1+K3)=2
of the isotropic core of a disclination [51]. Whenever the numerically calculated local line energy
is larger than Fl, we replace it by Fl. Note that Fl di9ers from Eq. (2.34). However, its main
purpose is to stabilize the hyperbolic point defect against opening up to a disclination ring
whose radius would be unphysical, i.e., larger than the values discussed in Section 2.4.2.
All our calculations are performed for the nematic liquid crystal pentylcyanobiphenyl (5CB),

for which the experiments were done [182,183]. Its respective bend and splay elastic constants
are K3 = 0:53× 10−6 dyn and K1 = 0:42× 10−6 dyn. The experimental ratio r3=r1=2 of the radii
of the large and small drops is in the range 10–50 [182,183]. The diNculty is that we want
to investigate details of the director 0eld close to the small spheres which requires a 0ne
triangulation on the length scale given by r1=2. To keep the computing time to a reasonable
value we choose the following lengths: r3=7; r1=2=0:5–2, and b=0:195 for the lattice constant
of the grid. In addition, we normally use one step of grid re0nement between the small spheres
(geometry 1) or between the small sphere and the south pole of the large nematic drop (geometry
2). With such parameters we obtain a lattice with 2200–2500 vertices.
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Fig. 33. The free energy F̂ as a function of the distance d1 + d2 between the small spheres which are placed
symmetrically about z = 0 (r1 = r2 = 1). Curve 1: zd = 0, curve 2: position zd of the defect can relax along the z
axis. From Ref. [220].

Fig. 34. The free energy F̂ − F̂min as a function of d1=r1 =d2=r2. The small spheres are placed symmetrically about
z = 0. Curve 1: r1 = r2 = 0:5, curve 2: r1 = r2 = 1, and curve 3: r1 = r2 = 2. From Ref. [220].

7.3. Results and discussion of the numerical study

In this subsection we discuss the results from our numerical investigation. First, we con0rm
the scaling law d1=2≈ 0:3r1=2, which was observed in experiment, by varying the di9erent lengths
in our geometry. Secondly, we demonstrate that the topological dipole is also meaningful in
complex geometries. Finally, we show that the hyperbolic hedgehog is not necessary to mediate
a repulsion between the water droplets.

7.3.1. Scaling law
In Fig. 33 we plot the reduced free energy F̂ as a function of the distance d1 + d2 between

the surfaces of the small spheres, which are placed symmetrically about the center, i.e., z2=−z1.
Their radii are r1 = r2 =1. Curve 1 shows a clear minimum at d1 +d2≈ 0:7, the defect stays in
the middle between the two spheres at zd = 0. In curve 2 we move the defect along the z axis
and plot the minimum free energy for each 0xed distance d1 + d2. It is obvious that beyond
d1 + d2 = 2 the defect moves to one of the small spheres. We will investigate this result in
more detail in the following subsection.
In Fig. 34 we take three di9erent radii for the small spheres, r1 = r2 = 0:5; 1; 2, and plot the

free energy versus d1=r1 close to the minimum. Recall that d1 is the distance of the hedgehog
from the surface of sphere 1. Since for such small distances d1 + d2 the defect always stays
at zd = 0, i.e., in the middle between the two spheres, we have d1=r1 = d2=r2. The quantity
F̂min refers to the minimum free energy of each curve. For each of the three radii we obtain
an energetically preferred distance d1=r1 in the range of [0:3; 0:35], which agrees well with the
experimental value of 0.3. Why does a scaling law of the form d1=2=(0:325±0:025)r1=2 occur?
When the small spheres are far away from the surface of the large nematic drop, its 0nite radius
r3 should hardly in>uence the distances d1 and d2. Then, the only length scale in the system is
r1 = r2, and we expect d1=2 ˙ r1=2. However, in Fig. 34 the in>uence from the boundary of the
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large sphere is already visible. Let us take curve 2 for spheres with radii r1=2=1 as a reference.
It is approximately symmetric about d1=r1 = 0:35. The slope of the right part of curve 3, which
corresponds to larger spheres of radii r1=2 = 2, is steeper than in curve 2. Also, the location of
the minimum clearly tends to values smaller than 0.3. We conclude that the small spheres are
already so large that they are strongly repelled by the boundary of the nematic drop. On the
other hand, the slope of the right part of curve 1, which was calculated for spheres of radii
r1=2 = 0:5, if less steep than in curve 2. This leads to the conclusion that the boundary of the
nematic drop has only a minor in>uence on such small spheres.
When we move the two spheres with radii r1=2 =1 together in the same direction along the z

axis, the defect always stays in the middle between the droplets and obeys the scaling law. We
have tested its validity within the range [0; 3] for the defect position zd. Of course, the absolute
minimum of the free energy occurs in the symmetric position of the two droplets, z2 =−z1.
We further check the scaling law for r1 	= r2. We investigate two cases. When we choose

r1 = 2 and r2 = 0:6, we obtain d1=2≈ 0:3r1=2. In the second case, r1 = 2 and r2 = 1, we 0nd
d1≈ 0:37r1 and d2≈ 0:3r2. As observed in the experiment, the defect sits always closer to the
smaller sphere. There is no strong deviation from the scaling law d1=2 = (0:325 ± 0:025)r1=2,
although we would allow for it, since r1 	= r2.

7.3.2. Identi4cation of the dipole
In this subsection we demonstrate that the topological dipole is meaningful in our geometry.

We place sphere 2 with radius r2 = 1 in the center of the nematic drop at z2 = 0. Then, we
determine the energetically preferred position of the point defect for di9erent locations z1 of
sphere 1 (r1 = 1). The position of the hedgehog is indicated by >= (d2 − d1)=(d1 + d2). If the
defect is located in the middle between the two spheres, > is zero since d1 = d2. On the other
hand, if it sits at the surface of sphere 1, d1 = 0, and > becomes one. In Fig. 35 we plot the
free energy F̂ versus >. In curve 1, where the small spheres are farthest apart from each other
(z1 =5), we clearly 0nd the defect close to sphere 1. This veri0es that the dipole is existing. It
is stable against >uctuations since a rough estimate of the thermally induced mean displacement
of the defect yields 0.01. The estimate is performed in full analogy to Eq. (4.6) of Section 4.2.
When sphere 1 is approaching the center (curve 2: z1 = 4 and curve 3: z1 = 3:5), the defect
moves away from the droplet until it nearly reaches the middle between both spheres (curve 4:
z1 = 3). This means, the dipole vanishes gradually until the hyperbolic hedgehog is shared by
both water droplets.
An interesting situation occurs when sphere 1 and 2 are placed symmetrically about z = 0.

Then, the defect has two equivalent positions on the positive and negative part of the z axis. In
Fig. 36 we plot again the free energy F̂ versus the position > of the defect. From curve 1 to
3 (z1 = z2 = 4; 3; 2:5) the minimum in F̂ becomes broader and more shallow. The defect moves
closer towards the center until at z1=−z2≈ 2:3 (curve 4) it reaches >=0. This is reminiscent to
a symmetry-breaking second-order phase transition [27,124] which occurs when, in the course
of moving the water droplets apart, the dipole starts to form. We take > as an order parameter,
where >=0 and > 	= 0 describe, respectively, the high- and the low-symmetry phase. A Landau
expansion of the free energy yields

F̂(>) = F̂0(z1) + a0[2:3− z1]>2 + c(z1)>4 ; (7.1)
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Fig. 35. The free energy F̂ as a function of >= (d2 − d1)=(d1 + d2). Sphere 2 is placed at z2 = 0. The position z1
of sphere 1 is the parameter. Curve 1: z1 = 5, curve 2: z1 = 4, curve 3: z1 = 3:5, and curve 4: z1 = 3. The radii are
r1 = r2 = 1. From Ref. [220].

Fig. 36. The free energy F̂ as a function of >= (d2 − d1)=(d1 + d2). The small spheres are placed symmetrically
about z = 0. Curve 1: z1 = −z2 = 4, curve 2: z1 = −z2 = 3, curve 3: z1 = −z2 = 2:5, curve 4: z1 = −z2 = 2:3,
curve 5: z1 =−z2 = 2. The radii are r1 = r2 = 1. From Ref. [220].

where z1 = −z2 plays the role of the temperature. Odd powers in > are not allowed because
of the required symmetry, F̂(>) = F̂(−>). This free energy qualitatively describes the curves
in Fig. 36. It should be possible to observe such a “second-order phase transition” 4 with a
method introduced recently by Poulin et al. [179] to measure dipolar forces in inverted nematic
emulsion. We already explained the method in Section 5.2 after Eq. (5.12). Two small droplets
0lled with a magnetorheological >uid are forced apart when a small magnetic 0eld of about
100G is applied perpendicular to the z axis. When the magnetic 0eld is switched o9, the two
droplets move towards each other to reach the equilibrium distance. In the course of this process
the phase transition for the dipole should be observable.

7.3.3. The dipole in a bipolar con4guration
It is possible to change the anchoring of the director at the outer surface of the large nematic

drop from homeotropic to planar by adding some amount of glycerol to the surrounding water
phase [182]. Then the bipolar con0guration for the director 0eld appears [26,120], where two
boojums [145], i.e., surface defects of charge 1 are situated at the north and south pole of the
large nematic drop (see con0guration (1) in Fig. 37). The topological point charge of the interior
of the nematic drop is zero, and every small water droplet with homeotropic boundary condition
has to be accompanied by a hyperbolic hedgehog. In the experiment the hedgehog sits close
to the water droplet, i.e., the dipole exists and it is attracted by the strong splay deformation

4 There is strictly speaking no true phase transition since our investigated system has 0nite size. However, we do
not expect a qualitative change in Fig. 36, when the nematic drop is much larger than the enclosed water droplets
(r3�r1; r2), i.e., when the system reaches the limit of in0nite size.
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Fig. 37. Planar boundary conditions at the outer surface of the large sphere create boojums, i.e., surface defects
at the north and the south pole. A water droplet with homeotropic boundary conditions nucleates a hyperbolic
hedgehog. Two con0gurations exist that are either stable or metastable depending on the position of the water
droplet; (1) the dipole, (2) the hyperbolic hedgehog sitting at the surface. From Ref. [220].

Fig. 38. The free energy F̂ as a function of the position z1 of the water droplet for the con0gurations (1) and (2).
For z1¿− 3:5, (1) is stable, and (2) is metastable. The situation is reversed for −4:3¡z1¡− 3:5. Con0guration
(1) loses its metastability at z1 =−4:3. From Ref. [220].

close to the south pole [182], as predicted by the phenomenological theory of Section 5 and
Refs. [182,140].
A numerical analysis of the free energy F̂ is in agreement with experimental observations

but also reveals some interesting details which have to be con0rmed. In Fig. 38 we plot F̂ as a
function of the position z1 of the small water droplet with radius r1=1. The diagram consists of
curves (1) and (2), which correspond, respectively, to con0gurations (1) and (2) in Fig. 37. The
free energy possesses a minimum at around z1 =−5:7. The director 0eld assumes con0guration
(2), where the hyperbolic hedgehog is situated at the surface of the nematic drop. Moving the
water droplet closer to the surface, induces a repulsion due to the strong director deformations
around the point defect. When the water droplet is placed far away from the south pole, i.e., at
large z1, the dipole of con0guration (1) forms and represents the absolute stable director 0eld.
At z1 =−3:5 the dipole becomes metastable but the system does not assume con0guration (2)
since the energy barrier the system has to overcome by thermal activation is much too high. By
numerically calculating the free energy for di9erent positions of the hedgehog, we have, e.g., at
z1=−4:0, determined an energy barrier of K3a≈ 1000kBT , where kB is the Boltzmann constant,
T the room temperature, and a≈ 1 �m. At z1 =−4:3, the dipole even loses its metastability, the
hyperbolic defect jumps to the surface at the south pole and the water droplet follows until it
reaches its energetically preferred position. On the other hand, if it were possible to move the
water droplet away from the south pole, the hyperbolic hedgehog would stay at the surface,
since con0guration (2) is always metastable for z1 ¿ −3:5. The energy barrier for a transition
to the dipole is again at least 1000kBT . We have also investigated the distance d1 of the defect
from the surface of the water droplet. For z1 ∈ [ − 2; 4], d1 >uctuates between 0.3 and 0.35.
For z1¡− 2, it increases up to 0.5 at z1 =−4:3, where the dipole loses its metastability.
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Fig. 39. An alternative, metastable con0guration. Both droplets are surrounded by a −1=2 disclination ring which
compensates the topological charge +1 of each droplet. An additional +1=2 disclination ring close to the surface
of the nematic drop satis0es the total topological charge +1. From Ref. [220].

Fig. 40. The free energy F̂ as a function of the distance d of the droplets. A repulsion for d¡ 0:6 is clearly visible.
From Ref. [220].

7.3.4. Repulsion without defect
We return to the 0rst geometry with two water droplets and homeotropic boundary conditions

at all the surfaces. When we take either a uniform director 0eld or randomly oriented direc-
tors as a starting con0guration, our system always relaxes into the con0guration sketched in
Fig. 39. Both water droplets are surrounded in their equatorial plane by a −1=2 disclination
ring which compensates the point charge +1 carried by each droplet. That means, each droplet
creates a Saturn-ring con0guration around it, which we introduced in Section 4.1 (see also
Refs. [225,119]). To obtain the total point charge +1 of the nematic drop there has to be an
additional topological defect with a point charge +1. In the numerically relaxed director 0eld,
we 0nd a +1=2 disclination ring close to the outer surface. This con0guration has a higher
energy than the one with the hyperbolic hedgehog. It is only metastable. Since a transition to
the stable con0guration needs a complete rearrangement of the director 0eld, the energy barrier
is certainly larger than K33a≈ 1000kBT . We, therefore, expect the con0guration of Fig. 39 to
be stable against thermal >uctuations. It would be interesting to search for it in an experiment.
We use the con0guration to demonstrate that even without the hyperbolic hedgehog the two

water droplets experience some repulsion when they come close to each other. In Fig. 40 we
plot the free energy F̂ versus the separation d of the two spheres. For large d, the free energy
oscillates which we attribute to numerical artifacts. For decreasing d, the free energy clearly
increases, and the water droplets repel each other due to the strong deformation of the director
0eld lines connecting the two droplets.

7.4. Coda: twist transition in nematic drops

Already thirty years ago, in connection with nematic emulsions, the two main director con-
0gurations in a nematic drop were discussed both experimentally and theoretically [147,61]: for
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homeotropic boundary conditions, a radial hedgehog at the center of the drop appears, whereas
tangential surface anchoring leads to the bipolar structure already discussed above. The simple
picture had to be modi0ed when it was found that nematic drops in both cases also exhibit
a twisted structure [26]. For the bipolar con0guration, a linear stability analysis of the twist
transition was performed [237]. A numerical study of the twisting in the radial structure of cap-
illaries was presented in Refs. [185,186]. Lavrentovich and Terentjev proposed that the twisted
director 0eld in a nematic drop with homeotropic surface anchoring is given by a combination
of a hyperbolic hedgehog at the center of the drop and a radial one at its periphery [126] as
illustrated in Fig. 7 of Section 2.4.1. This con0guration was analyzed by means of an ansatz
function, and a criterion for the twist transition was given [126].
In this subsection we focus on the director 0eld between two concentric spheres with perpen-

dicular anchoring at both the surfaces and present a stability analysis for the radial con0guration
against axially symmetric deformations. In particular, we will derive a criterion for the twist
transition, and we will show that even small spheres inside a large one are suNcient to avoid
twisted con0gurations. This has been recently observed in the experiments on multiple nematic
emulsions [182,183].
Throughout the paper we assume rigid surface anchoring of the molecules. In nematic emul-

sions it can be achieved by a special choice of the surfactant [182,183]. For completeness we
note that in a single droplet for suNciently weak anchoring strength an axial structure with an
equatorial disclination ring appears [66,60].
In the following three subsections, we 0rst expand the Frank free energy into small deviations

from the radial con0guration up to second order. Then, we formulate and solve the corresponding
eigenvalue equation arising from a linear stability analysis. The lowest eigenvalue leads to a
criterion for the twist transition. We close with a discussion of our results.

7.4.1. Expansion of the elastic energy
We consider the defect-free radial director con0guration between two concentric spheres of

radii rmin and rmax and assume rigid radial surface anchoring at all the surfaces. If the smaller
sphere is missing, the radial director con0guration exhibits a point defect at the center. We will
argue below that this situation, rmin = 0, is included in our treatment.
The twist transition reduces the SO(3) symmetry of the radial director con0guration to an

axial C∞ symmetry. In order to investigate the stability of the radial con0guration n0=er against
a twist transition, we write the local director in a spherical coordinate basis, allowing for small
deviations along the polar (5) and the azimuthal (7) direction:

n(r; 5) = (1− 1
2b
2f2 − 1

2a
2g2)er + age5 + bfe7 : (7.2)

f(r; 5) and g(r; 5) are general functions which do not depend on 7 due to our assumption of
axial symmetry. The amplitudes a and b describe the magnitude of the polar and azimuthal
deviation from the radial con0guration. The second-order terms in a and b result from the
normalization of the director.
The radial director 0eld between the spheres only involves a splay distortion, and its Frank

free energy is

Fradial = 8�K11(rmax − rmin) ; (7.3)
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where we did not include the saddle-splay energy. If an azimuthal (b 	= 0) or a polar component
(a 	= 0) of the director is introduced, the splay energy can be reduced at costs of non-zero twist
and bend contributions depending on the values of the Frank elastic constants K1, K2, and K3.
We expand the Frank free energy of the director 0eld in Eq. (7.2) up to second order in a and
b and obtain

VF =2�b2
∫
dr
∫
d cos 5[− 4K1(f2 + rfrf) + K2(cot 5f + f5)2 + K3(f + rfr)2]

+ 2�a2
∫
dr
∫
d cos 5[− 4K1(g2 + rgrg) + K1(cot 5g+ g5)2 + K3(g+ rgr)2] (7.4)

as the deviation from Fradial. The respective subscripts r and 5 denote partial derivatives with
respect to the corresponding coordinates. Note that there are no linear terms in a or b, i.e.,
the radial director 0eld is always an extremum of the Frank free energy. Furthermore, there
is no cross-coupling term ab in Eq. (7.4), and the stability analysis for polar and azimuthal
perturbations can be treated separately. For example, for any function f(r; 5) leading to a
negative value of the 0rst integral in Eq. (7.4), the radial con0guration (a= b= 0) is unstable
with respect to a small azimuthal deformation (b 	= 0), which introduces a twist into the radial
director 0eld. Therefore, we will call it the twist deformation in the following. An analogous
statement holds for g(r; 5) which introduces a pure bend into the radial director 0eld. We are
now determining the condition the elastic constants have to ful0l in order to allow for such
functions f(r; 5) and g(r; 5). As we will demonstrate in the next subsection, the solution of this
problem is equivalent to solving an eigenvalue problem.

7.4.2. Formulating and solving the eigenvalue problem
In a 0rst step, we focus on the twist deformation (b 	= 0). We are facing the problem to

determine for which values of K1, K2, and K3 the functional inequality∫
dr
∫
dx {K2(1− x2)[xf=(1− x2)− fx]2 + (K3 − 4K1)f2

+ (2K3 − 4K1)rfrf + K3r2f2r }¡ 0 (7.5)

possesses solutions f(r; x). The left-hand side of the inequality is the 0rst integral of Eq. (7.4)
after substituting x = cos 5. After some manipulations (see Ref. [197]), we obtain∫

dr
∫
dx (K2fD(x)f + K3fD(r)f)∫

dr
∫
dx f2

¡ 2K1 ; (7.6)

where the second-order di9erential operators D(x) and D(r) are given by

D(x) = (1− x2) 9
2

9x2 + 2x
9
9x +

1
1− x2 and D(r) =−r2 9

2

9r2 − 2r
9
9r : (7.7)

The inequality in Eq. (7.6) is ful0lled the best when the left-hand side assumes a minimum.
According to the Ritz principle in quantum mechanics, this minimum is given by the lowest
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eigenvalue of the operator

K2D(x) + K3D(r) (7.8)

on the space of square-integrable functions with f(rmin; 5)=f(rmax; 5)=0 for 06 56 � (0xed
boundary condition) and f(r; 0) = f(r; �) = 0 for rmin 6 r 6 rmax.
The eigenvalue equation of the operator K2D(x)+K3D(r) separates into a radial and an angular

part. The radial part is an Eulerian di9erential equation [20] with the lowest eigenvalue

&(r)0 =
1
4
+
(

�
ln(rmax=rmin)

)2
(7.9)

and the corresponding eigenfunction

f(r)(r) =
1√
r
sin
(
� ln(r=rmin)
ln(rmax=rmin)

)
: (7.10)

The angular part of the eigenvalue equation is solved by the associated Legendre functions Pm=1n .
The lowest eigenvalue is &(x)0 =2, and the corresponding eigenfunction is f(x)(5)=P11(5)=sin 5.
With both these results, we obtain the instability condition for a twist deformation:

1
2
K3
K1

[
1
4
+
(

�
ln(rmax=rmin)

)2]
+
K2
K1
¡ 1 : (7.11)

This inequality is the main result of the paper. If it is ful0lled, the radial director 0eld no
longer minimizes the Frank free energy. Therefore it is a suNcient condition for the radial
con0guration to be unstable against a twist deformation. It is not a necessary condition since
we have restricted ourselves to second-order terms in the free energy, not allowing for large
deformations of the radial director 0eld. Hence, we cannot exclude the existence of further
con0gurations which, besides the radial, produce local minima of the free energy.
To clarify our last statement, we take another view. The stability problem can be viewed as a

phase transition. Let us take K3 as the “temperature”. Then condition (7.11) tells us that for large
K3 the radial state is the (linearly) stable one. If the phase transition is second-order-like, the
radial state loses its stability exactly at the linear stability boundary, while for a 0rst-order-like
transition the system can jump to the new state (due to non-linear >uctuations) even well
inside the linear stability region. Thus, as long as the nature of the transition is not clear, linear
stability analysis cannot predict for sure that the radial state will occur in the linear stability
region. Furthermore, if the transition line is crossed, the linear stability analysis breaks down,
and there could be a transition from the twisted to a new con0guration. However, there is no
experimental indication for such a new structure. Keeping this in mind, we will discuss the
instability condition (7.11) in the next subsection.
We 0nish this subsection by noting that the elastic energy for a bend deformation (a 	= 0)

has the same form as the one for the twist deformation (b 	= 0), however, with K2 replaced by
K1. Therefore, we immediately conclude from (7.11) that the instability condition for a polar
component (a 	= 0) in the director 0eld (7.2) cannot be ful0lled for positive elastic constants.
A director 0eld with vanishing polar component is always stable in second order.
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Fig. 41. (a) Stability diagram for the twist transition [cf. Eq. (7.11)]. The dark grey corresponds to the ratios of
Frank constants where the radial con0guration is unstable for a ratio rmax=rmin = 50. The light grey triangle is the
region where the radial con0guration is unstable for rmax=rmin ¿ 50. The circles represent the elastic constants for
the liquid crystal compounds MBBA, 5CB, and PAA. (b) A comparison between the regions of instability for a
radial director 0eld against twisting derived in this work (full line) and by Lavrentovich and Terentjev (dashed
line) for rmax=rmin → ∞. The regions di9er by the areas I and II.

7.4.3. Discussion5
The instability condition (7.11) indicates for which values of the elastic constants K1, K2, and

K3 the radial con0guration is expected to be unstable with respect to a twist deformation. The
instability domain is largest for rmax=rmin → ∞ and decreases with decreasing ratio rmax=rmin,
i.e., a water droplet inside a nematic drop can stabilize the radial con0guration.
In Fig. 41a, the instability condition (7.11) is shown. If the ratios of the Frank elastic constants

de0ne a point in the grey triangles, the radial con0guration can be unstable depending on the ratio
rmax=rmin. The dark grey area gives the range of the elastic constants where a twisted structure
occurs for rmax=rmin =50. With increasing ratio rmax=rmin the instability domain enlargens until it
is limited by K3=(8K1)+K2=K1=1 for rmax=rmin → ∞. The light grey triangle is the region where
the radial con0guration is unstable for rmax=rmin¿ 50 but where it is stable for rmax=rmin¡ 50.
The circles in Fig. 41a, represent, respectively, the elastic constants for the liquid crystal com-

pounds MBBA, 5CB, and PAA. For 5CB the elastic constants are in the light grey domain, i.e.,
a twisted structure is expected for rmax=rmin → ∞ (no inner sphere) but not for rmax=rmin¡ 50.
Such a behavior has been recently observed in multiple nematic emulsions [182]. It has been
found that a small water droplet inside a large nematic drop prevents the radial con0guration
from twisting.
Two examples of nematic drops observed under the microscope between crossed polarizers

can be seen in Fig. 42. In the left image the director con0guration is pure radial, in the right one
it is twisted. The left drop contains a small water droplet that stabilizes the radial con0guration
according to Eq. (7.11). The water droplet is not visible in this image because of the limited
resolution. A better image is presented in [182]. We have calculated the polarizing microscope
picture of the twisted con0guration by means of the 2 × 2 Jones matrix formalism [60]. We
took the director 0eld of Eq. (7.2) and used the eigenfunction of Eq. (7.10) with an amplitude

5 Reprinted with permission from A. RUudinger, H. Stark, Twist transition in nematic droplets: A stability analysis,
Liq. Cryst. 26 (1999) 753. Copyright 1999 Taylor and Francis, http:==www.tandf.co.uk.
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Fig. 42. Radial (left) and twisted (right) con0guration of the director 0eld in a nematic drop (diameter ≈ 20 �m) of
5CB observed under the microscope between crossed polarizers. In the radial con0guration there is a small isotropic
liquid droplet in the center of the nematic drop (invisible in this image).

Fig. 43. Calculated transmission for the twisted con0guration of the director 0eld in a nematic drop whose diameter
is 20 �m. The transmission amplitude was obtained by summing over 20 wave lengths between 400 and 800 nm.
The amplitude b of the twist deformation was set to 0.15. This 0gure has to be compared to the right image of
Fig. 42.

Fig. 44. Radial dependence of f(r)(r) [cf. Eq. (7.10)] for rmax=rmin = 50. The function is strongly peaked close
to rmin.

b= 0:15. The result shown in Fig. 43 is in qualitative agreement with the experimental image
on the right in Fig. 42.
In Fig. 44 we plot the radial part f(r)(r) [see Eq. (7.10)] of the eigenfunction f(r; 5) =

f(r)(r)f(x)(5) governing the twist deformations. For large values of rmax=rmin it is strongly
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peaked near rmin. The maximum of f(r)(r) occurs at a radius r0 which is given by

ln
r0
rmin

=
ln(rmax=rmin)

� arctan
2�

ln(rmax=rmin)
: (7.12)

Hence, for rmax=rmin�1 the maximal azimuthal component bf(r0; 5) of the director 0eld is
located at r0=rmin = e2≈ 7:39, i.e., close to the inner sphere. From the polarizing microscope
pictures it can be readily seen that the twist deformation is largest near the center of the nematic
drop. In the opposite limit, rmax=rmin≈ 1, the position of maximal twist is at the geometric mean
of rmin and rmax: r0 = (rminrmax)1=2.
In the limit rmin → 0, where the inner sphere is not existing, a point defect with a core radius

rc is located at r=0. In this case our boundary condition, f(r)(rmin)= 0, makes no sense since
the director is not de0ned for r¡rc. Fortunately, for rmin → 0 the lowest eigenvalue of the
operator (7.8) and therefore the instability condition is insensitive to a change of the boundary
condition. Furthermore, the shape of the eigenfunction is also independent of the boundary
condition, in particular its maximum is always located close to rmin.
A last comment concerns the work of Lavrentovich and Terentjev [126]. In Fig. 41b, we plot

as a dashed line the criterion, K3=(4K1)+K2=(2K1)=1, which the authors of Ref. [126] derived
for the twist transition in the case rmax=rmin → 0. They constructed an ansatz function which
connects a hyperbolic hedgehog at the center via a twist deformation to a radial director 0eld at
the periphery of a nematic drop. Then they performed a stability analysis for an appropriately
chosen order parameter. The region of instability calculated in this article and their result di9er
by the areas I and II. This is due to the complementarity of the two approaches. While the
authors of Ref. [126] allow for large deviations with respect to the radial con0guration at the
cost of 0xing an ansatz function, we allow the system to search the optimal con0guration
(i.e., eigenfunction) for small deformations. We conclude that both results together give a good
approximation of the region of instability for the radial con0guration against twisting. However,
we cannot exclude that a full non-linear analysis of the problem leads to a change in the stability
boundaries.
In conclusion, we have performed a stability analysis of the radial con0guration in nematic

drops with respect to a twist deformation. Assuming strong perpendicular anchoring at all the
surfaces, we have derived an instability condition in terms of the Frank constants. We could
show that a small water droplet inside the nematic drop stabilizes the radial con0guration.

8. Temperature-induced +occulation above the nematic-isotropic phase transition

Ping Sheng [210,211] was the 0rst to study the consequences of surface-induced liquid crys-
talline order above the nematic-isotropic phase transition. He introduced the notion paranematic
order in analogy to the paramagnetic phase, in which a magnetic 0eld causes a non-zero mag-
netization. He realized that the bounding surfaces of a restricted geometry in>uence the bulk
transition temperature Tc. In nematic 0lms, e.g., the phase transition even vanishes below a
critical thickness [210]. Sheng’s work was extended by Poniewierski and Sluckin [177], who
studied two plates immersed in a liquid crystal above Tc and who calculated an attractive force
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between the two plates due to the surface-induced order. This force was investigated in detail
by Bor\stnik and \Zumer [18].
The work presented in this section explores the liquid crystal mediated interaction between

spherical particles immersed into a liquid crystal above Tc. It has to be added to the conventional
van der Waals, electrostatic, and steric interactions as a new type of interparticle potential. Its
strength can be controlled by temperature, and close to the clearing temperature Tc, it can induce
a >occulation transition in an otherwise stabilized colloidal dispersion.
In Section 8.1 we review the Landau–de Gennes theory, which describes liquid crystalline

order close to the phase transition, and we present Euler–Lagrange equations for the director
and the Maier–Saupe order parameter to be de0ned below. Section 8.2 illustrates paranematic
order in simple plate geometries and introduces the liquid crystal mediated interaction of two
parallel plates. In Section 8.3 we extend it to spherical particles and investigate its consequences
when combined with van der Waals and electrostatic interactions.

8.1. Theoretical background

We start with a review of the Landau–de Gennes theory and then formulate the
Euler–Lagrange equations for restricted geometries with axial symmetry.

8.1.1. Landau–de Gennes theory in a nutshell
The director n, a unit vector, only indicates the average direction of the molecules. It tells

nothing about how well the molecules are aligned. To quantify the degree of liquid crystalline
order, we could just vary the magnitude of n, i.e., choose a polar vector as an order param-
eter. However, all nematic properties are invariant under inversion of the director, thus every
polar quantity has to be zero. The next choice is any second-rank tensor, e.g., the magnetic
susceptibility tensor �. The order parameter Q is de0ned by the relation

Q =
9

2 tr �

(
� − 1

3
1 tr �

)
; (8.1)

where tr � = �ii stands for the trace of a tensor, and Einstein’s summation convention over
repeated indices is always assumed in the following. We subtract the isotropic part 1 tr �=3
from �, in order that Q vanishes in the isotropic liquid. The prefactor is convention. The order
parameter Q describes, in general, biaxial liquid crystalline ordering through its eigenvectors
and eigenvalues. The uniaxial symmetry of the nematic phase demands that two eigenvalues of
Q are equal, which then assumes the form

Q =
3
2
S
(
n ⊗ n − 1

3
1
)

with S =
3(�‖ − �⊥)
2�⊥ + �‖

: (8.2)

The Maier–Saupe or scalar order parameter S indicates the degree of nematic order through the
magnetic anisotropy V�=�‖−�⊥. It was 0rst introduced by Maier and Saupe in a microscopic
treatment of the nematic phase [142]. The microscopic approach was generalized by Lubensky
to describe biaxial order [138].
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In his seminal publication (see Ref. [48]) de Gennes was interested in pretransitional e9ects
above the nematic-isotropic phase transition. He constructed a free energy in Q and ∇iQjk in
the spirit of Landau and Ginzburg, commonly known as Landau–de Gennes theory:

FLG =
∫
d3r (fb + f∇Q) ; (8.3)

with

fb = 1
2a0(T − T ∗) trQ2 − 1

3b trQ
3 + 1

4c(trQ
2)2 ; (8.4)

f∇Q = 1
2L1(∇iQjk)2 + 1

2L2(∇iQij)2 : (8.5)

The quantity fb introduces a Landau-type free energy density which describes a 0rst-order phase
transition, and f∇Q is necessary to treat, e.g., >uctuations in Q, as noticed by Ginzburg. Both
free energy densities are Taylor expansions in Q and ∇iQjk , and each term is invariant under
the symmetry group O(3) of the isotropic liquid, i.e., the high-symmetry phase. The Landau
parameters of the compound 5CB are a0 = 0:087× 107 erg=cm3 K; b= 2:13× 107 erg=cm3; c=
1:73×107 erg=cm3, and T ∗=307:15K [38]. The elastic constants L1 and L2 are typically of the
order of 10−6 dyn.
It can be shown unambiguously that fb is minimized by the uniaxial order parameter of

Eq. (8.2), for which the free energies fb and f∇Q take the form

fb =
3
4
a0(T − T ∗)S2 − 1

4
bS3 +

9
16
cS4 ; (8.6)

f∇Q =
3
4
L1(∇iS)2 + 9

4
L1S2(∇inj)2 : (8.7)

To arrive at Eq. (8.7), we set L2 = 0 in order to simplify the free energy as much as possible
for our treatment in Sections 8.2 and 8.3. L2 	= 0 merely introduces some anisotropy, as shown
by de Gennes [48]. Assume, e.g., that S is 0xed to a non-zero value at a space point rs in the
isotropic >uid, then the nematic order around rs decays exponentially on a characteristic length
scale called nematic coherence length. If L2 	= 0, the respective coherence lengths along and
perpendicular to n are di9erent. In Fig. 45 we plot fb as a function of S using the parameters of
5CB. Above the superheating temperature T †=T ∗+b2=(24a0c), there exists only one minimum
at S = 0 for the thermodynamically stable isotropic phase. At T † a second minimum for the
metastable nematic phase evolves, which becomes absolutely stable at the clearing temperature
Tc=T ∗+b2=(27a0c). A 0rst-order phase transition occurs, and the order parameter as a function
of temperature assumes the form

S(T ) =
1
6
b
c
+

√
2a
3c
(T † − T ) : (8.8)

Finally, at the supercooling temperature T ∗ the curvature of fb at S = 0 changes sign, and the
isotropic >uid becomes absolutely unstable. For the compound 5CB, we 0nd Tc − T ∗ = 1:12K
and T † − Tc = 0:14K.
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Fig. 45. The free energy density fb in units of 1000a0T∗ as a function of the Maier–Saupe order parameter S for
various temperatures. The Landau coeNcients of the compound 5CB are employed. A 0rst-order transition occurs
at Tc.

8.1.2. Euler–Lagrange equations for restricted geometries
In the following, we determine the surface-induced liquid crystalline order above Tc. As usual,

it follows from a minimization of the total free energy,

F = FLG + Fsur ; (8.9)

where we have added a surface term Fsur to the Landau–de Gennes free energy FLG. We
restrict ourselves to uniaxial order and employ a generalization of the Rapini–Papoular potential,
introduced in Section 2.1,

Fsur =
∫
dA
3
4
(WS(S − S0)2 + 3WnSS0[1− (n · �̂)2]) ; (8.10)

where dA is the surface element. The quantity S0 denotes the preferred Maier–Saupe parameter
at the surface, and �̂ is the surface normal since we always assume homeotropic anchoring.
The surface-coupling constants WS and Wn penalize a respective deviation of S from S0 and
of the director n from �̂. In recent experiments, anchoring and orientational wetting transitions
of liquid crystals, con0ned to cylindrical pores of alumina membranes, were analyzed [42,43].
It was found that WS and Wn vary between 10−1 and 5, with the ratio Wn=WS not being
larger than 0ve. If WS = Wn = W , the intergrand in Eq. (8.10) is equivalent to the intuitive
form W tr(Q − Q0)2=2 with the uniaxial Q from Eq. (8.2) and Q0 = 3

2S0(�̂ ⊗ �̂ − 1
31). It was

introduced by Nobili and Durand [165]. In formulating the elastic free energy density f∇Q
of Eq. (8.5), one also identi0es a contribution which can be written as a total divergence,
∇i(Qij∇kQjk − Qjk∇kQij). When transformed into a surface term and when a uniaxial Q is
inserted, it results in the saddle-splay energy of Eq. (2.4). To simplify our calculations, we will
neglect this term. It is not expected to change the qualitative behavior of our system for strong
surface coupling.
In what follows, we assume rotational symmetry about the z axis. We introduce cylindri-

cal coordinates and write the director in the local coordinate basis, n(6; z) = sin�(6; z)e6 +
cos�(6; z)ez, restricting it to the (6; z) plane. The same is assumed for the surface normal
�̂(6; z) = sin�0(6; z)e6 + cos�0(6; z)ez. Expressing and minimizing the total free energy under
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all these premises, we obtain the Euler–Lagrange equations for S and the tilt angle � in the
bulk,

∇2S − 1
�2N
S +

b
2L1

S2 − 3c
2L1

S3 − 3S
(
(∇�)2 + sin2�

62

)
= 0 ; (8.11)

∇2�− sin� cos�
62

= 0 ; (8.12)

and the boundary equations are

(�̂ ·∇)S − 1
%S�N

(S − S0)− 3
2%n�N

S0 sin2(�−�0) = 0 ; (8.13)

(�̂ ·∇)�− 1
2%n�N

S0
S
sin[2(�−�0)] = 0 : (8.14)

The meaning of the nematic coherence length

�N =
√
L1=[a0(T − T ∗)] (8.15)

will be clari0ed in the next subsection. At the phase transition, �NI = �N(Tc) is of the order of
10 nm, as can be checked by the parameters of 5CB. The surface-coupling strengths WS and
Wn are characterized by dimensionless quantities

%S =
1
�N
L1
WS

=

√
a0(T − T ∗)L1

WS
and %n =

1
�N
L1
Wn

=

√
a0(T − T ∗)L1

Wn
; (8.16)

which compare the respective surface extrapolation lengths L1=WS and L1=Wn to the nematic
coherence length �N. For W =1erg=cm2 and L1 =10−6 dyn, the extrapolation lengths are of the
same order as �N at Tc, i.e., 10 nm.

8.2. Paranematic order in simple geometries

In the 0rst two subsections we study the paranematic order in a liquid crystal compound
above Tc for simple plate geometries. It is induced by a coupling between the surfaces and the
molecules. We disregard the non-harmonic terms in S in Eq. (8.11) to simplify the problem as
much as possible and to obtain an overall view of the system. In Section 8.2.3 the e9ect of the
non-harmonic terms is reviewed.

8.2.1. One plate
We assume that an in0nitely extended plate, which induces a homeotropic anchoring of the

director, is placed at z = 0. Its surface normals are ±ez, and its thickness should be negligi-
bly small. A uniform director 0eld along the z axis obeys Eqs. (8.12) and (8.14), and the
Maier–Saupe order parameter S follows from a solution of Eqs. (8.11) and (8.13),

S(z) =
S0

1 + %S
exp[− |z|=�N] : (8.17)

The order parameter S decays exponentially along the z axis on a characteristic length scale
given by the nematic coherence length �N. The value of S at z= 0 depends on the strength %S
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of the surface coupling, i.e., on the ratio of the surface extrapolation length L1=W and �N. The
plate is surrounded by a layer of liquid crystalline order whose thickness �N decreases with
increasing temperature since �N ˙ (T − T ∗)−1=2. The total free energy per unit surface, F=A,
consisting of the Landau–de Gennes and the surface free energy, is

F
A
=
3
2
WSS20

%S
1 + %S

: (8.18)

Note that the energy increases with temperature since %S ˙
√
T − T ∗. The whole theory cer-

tainly becomes invalid when �N approaches molecular dimensions. For 10K above Tc, we 0nd
�N≈ 3 nm, i.e., the theory is valid several Kelvin above Tc. Finally, we notice that a nematic
wetting layer can be probed by the evanescent wave technique [214].

8.2.2. Two plates
If two plates of the previous subsection are placed at z = ±d=2, the order parameter pro0le

S(z), determined from Eqs. (8.11) and (8.13), is

S(z) = S0
cosh(z=�N)

cosh(d=2�N) + %S sinh(d=2�N)
: (8.19)

For separations d�2�N, the layers of liquid crystalline order around the plates do not overlap,
as illustrated in the inset of Fig. 46. 6 If d 6 2�N, the whole volume between the plates is
occupied by nematic order, which induces an attraction between the plates. The interaction
energy per unit area, VF=A, is de0ned as VF=A= [F(d)− F(d→ ∞)]=A. It amounts to

VF
A
=
F(d)− F(d→ ∞)

A
=
3
2
WSS20%S

[
tanh(d=2�N)

1 + %S tanh(d=�N)
− 1
1 + %S

]
: (8.20)

In Fig. 46 we plot VF=A versus the reduced distance d=2�NI for di9erent temperatures at Tc
and above Tc. The material parameters of 5CB are chosen; WS = 1erg=cm2, and S0 = 0:3. The
energy unit 3WSS20 =2=10

4kBT is determined at room temperature. Note, that �NI is the coherence
length at Tc. If d��N, the interaction energy decays exponentially in d; VF=A ˙ exp(d=�N).
The interaction is always attractive over the whole separation range. This can be understood
by a simple argument. Above Tc, the nematic order always possesses higher energy than the
isotropic liquid. Therefore, the system can reduce its free energy by moving the plates together.
The minimum of the interaction energy occurs at d=0, i.e., when the liquid with nematic order
between the plates is completely removed. This simple argument explains the deep potential
well in Fig. 46. It extends to a separation of 2�N where the nematic layers start to overlap.
Since �N ˙ (T − T ∗)−1=2, the range of the interaction decreases with increasing temperature,
and the depth of the potential well becomes smaller.

8.2.3. E<ect of non-harmonic terms
In this subsection we review the e9ects on the two-plate geometry when the complete

Landau–de Gennes theory including its non-harmonic terms in S is employed. A wealth of

6 Figs. 46, 47, 51 and 52 are reprinted with permission from A. Bor\stnik, H. Stark, S. \Zumer, Temperature-induced
>occulation of colloidal particles above the nematic-isotropic phase transition, Prog. Colloid Polym. Sci. 115 (2000)
353. Copyright 2000 Springer Verlag.
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Fig. 46. Interaction energy per unit area, VF=A, as a function of the reduced distance d=2�NI for various temperatures.
For further explanation see text.

phenomena exists, which we illustrate step by step [210,211]. Their in>uence on the interaction
of two plates was studied in detail by Bor\stnik and \Zumer [18].
First, we assume rigid anchoring at the nematic-plate interfaces, i.e., S(±d=2) is 0xed to

S0 [210]. For d → ∞, there is a phase transition at the bulk transition temperature Tc∞ = Tc
from the nematic to the surface-induced paranematic phase, as expected. When the plates are
moved together, the transition temperature Tcd increases until the 0rst-order transition line in
a d–T phase diagram ends in a critical point at (dcrit; T critcd ). For d¡dcrit, no phase transition
between the nematic and the paranematic phase is observed anymore. This is similar to the
gas–liquid critical point in an isotropic >uid. For S0 = S(±d=2) = 0:5− 1 and typical values of
the Landau parameters, T critcd is situated approximately 0.2K above Tc∞ = Tc and 0.1K above
the superheating temperature T †.
Secondly, we concentrate on a basically in0nite separation, d��NI, and allow a 0nite surface-

coupling strength WS [211]. For suNciently small WS , both the boundary [S(±d=2)] and the
bulk [S(0)] value of the scalar order parameter exhibit a jump at Tc. That means, the surface
coupling is so small that S(±d=2) follows the bulk order parameter. However, in a 0nite
interval WS0¡WS ¡W crit

S , the discontinuity of S(±d=2), which Sheng calls a boundary-layer
phase transition, occurs at temperatures Tbound above Tc. Beyond the critical strength W crit

S ,
the boundary transition vanishes completely. Sheng just used the linear term ˙ WSS of our
surface potential for his investigation. The separate boundary-layer transition occurred in the
approximate interval 0:01 erg=cm2¡WS ¡ 0:2 erg=cm2. We do not expect a dramatic change of
this interval for the potential of Eq. (8.10).
Thirdly, we combine the 0nite separation of the plates with a 0nite surface-coupling strength

WS . The boundary-layer transition temperatures Tbound and the interval WS0¡WS ¡W crit
S are not

e9ected by a 0nite d. In addition, a jump of S(±d) occurs at the bulk transition temperature
Tcd 6 Tbound. It evolves gradually with decreasing d. When Tcd becomes larger than Tbound
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in the course of moving the plates together, the separate boundary-layer transition disappears.
Finally, at a critical thickness dcrit the nematic-paranematic transition vanishes altogether.
All these details occur close to Tc∞ = Tc within a range of T critcd − Tc∞ = 0:5K [211]. The

calculations are non-trivial. Since we do not want to render our investigation in the following
subsection too complicated, we will skip the non-harmonic terms in the Landau–de Gennes
theory. Furthermore, we use a relatively high anchoring strength of about WS = 1erg=cm2, so
that T critcd − Tc∞ is even smaller than 0.5K. The simpli0cations are suNcient to bring out the
main features of our system.

8.3. Two-particle interactions above the nematic-isotropic phase transition

In this subsection we present the liquid crystal mediated interaction above Tc as a new
type of two-particle potential. We combine it with the traditional van der Waals and electro-
static interaction and explore its consequences, namely the possibility of a temperature-induced
>occulation. We start with a motivation, introduce all three types of interactions, and 0nally
discuss their consequences. Our presentation concentrates on the main ideas and results (see also
Ref. [17]). Details of the calculations can be found in Refs. [15,16].

8.3.1. Motivation
In Section 3 we already mentioned that the stability of colloidal systems presents a key issue

in colloid science since their characteristics change markedly in the transition from the dispersed
to the aggregated state. There are always attractive van der Waals forces, which have to be
balanced by repulsive interactions to prevent a dispersion of particles from aggregating. This is
achieved either by electrostatic repulsion, where the particles carry a surface charge, or by steric
stabilization, where they are coated with a soluble polymer brush. Dispersed particles approach
each other due to their Brownian motion. They aggregate if the interaction potential is attractive,
i.e., if it possesses a potential minimum Umin¡ 0 at 0nite separations. Two situations are
possible. In the case of weak attraction, where |Umin| ≈ 1–3kBT , an equilibrium phase separation
of a dilute and an aggregated state exists. The higher interaction energy of the dispersed particles
is compensated by their larger entropy in comparison to the aggregated phase. Strong attraction,
i.e., |Umin|¿ 5− 10kBT , causes a non-equilibrium phase with all the particles aggregated. They
cannot escape the attractive potential in the observation time of interest of, e.g., several hours.
Due to Chandrasekhar, the escape time tesc can be estimated as [28]

tesc =
a2

D0 exp(−Umin=kBT ) with D0 =
kBT
6�)a : (8.21)

D0 is the di9usion constant of a non-interacting Brownian particle with radius a, and ) is the
shear viscosity of the solvent. The quantity tesc approximates the time a particle needs to di9use
a distance a in leaving a potential well of depth Umin. More re0ned theories suggest that the
complete two-particle potential has to be taken into account when calculating tesc [131,100].
Here, we study the in>uence of liquid crystal mediated interactions on colloidal dispersions

above Tc, which are stabilized by an electrostatic repulsion. We demonstrate that the main e9ect
of the liquid crystal interaction ULC is an attraction at the length scale of �N, whose strength
can be controlled by temperature. If the electrostatic repulsion is suNciently weak, ULC induces
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Fig. 47. Two particles at a separation d�2�N do not interact. At d≈ 2�N both a strong attraction and repulsion
set in.

a >occulation of the particles within a few Kelvin close to the transition temperature Tc. It
is completely reversible. A similar situation is found in polymer stabilized colloids. There,
the abrupt change from a dispersed to a fully aggregated state within a few Kelvin is called
critical >occulation [162,202]. The reversibility of >occulation has interesting technological im-
plications. For example, in “instant” ink, the particles of dried ink redisperse rapidly when put
into water [162].
So far, experiments on colloidal dispersions above the clearing temperature Tc are very rare

[19,178]. They would help to explore a new class of colloidal interactions. Furthermore, they
could provide insight into wetting phenomena above Tc with all its subtleties close to Tc,
which we reviewed in Section 8.2.3. Also, experiments by Mu\sevi\c et al. [158,159], who probe
interactions with the help of an atomic force microscope, are promising.

8.3.2. Liquid crystal mediated interaction
One particle suspended in a liquid crystal above the clearing temperature Tc is surrounded

by a layer of surface-induced nematic order whose thickness is of the order of the nematic
coherence length �N. The director 0eld points radially outward when a homeotropic anchoring
at the particle surface is assumed. Two particles with a separation d�2�N do not interact.
When the separation is reduced to d≈ 2�N, a strong attraction sets in since the total volume of
nematic order is decreased as in the case of two plates (see Fig. 47). In addition, a repulsion
due to the elastic distortion of the director 0eld lines connecting the two particles occur. In this
subsection we quantify the two-particle interaction mediated by a liquid crystal.
In principle, the director 0eld and the Maier–Saupe order parameter S follow from a solution

of Eqs. (8.11)–(8.14). Since the geometry of Fig. 48a cannot be treated analytically, we employ
two simpli0cations. First, we approximate each sphere by 72 conical segments, whose cross
sections in a symmetry plane of our geometry are illustrated in Fig. 48a. In the following,
we assume a particle radius a = 250 nm, and, therefore, each line segment has a length of
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Fig. 48. (a) Two spheres A and B are approximated by conical segments as illustrated in the blowup. From
Ref. [15]. (b) At separations d≈ 2�N, the director is chosen as a tangent vector nc of a circular segment whose
radius is determined by the boundary condition (8.14).

26 nm. Secondly, we construct appropriate ansatz functions for the 0elds S(r) and n(r). To
arrive at an ansatz for S(r), we approximate the bounding surfaces Ai and Bi of region i
by two parallel ring-like plates and employ the order parameter pro0le of Eq. (8.19), where
d is replaced by an average distance di of the bounding surfaces. Since the particle radius
is an order of magnitude larger than the interesting separations, which do not exceed several
coherence lengths, the analogy with two parallel plates is justi0ed. Furthermore, we expect that
only a few regions close to the symmetry axis are needed to calculate the interaction energy
with a suNcient accuracy. In the limit of large separations (d�2�N), the director 0eld around
each sphere points radially outward. In the opposite limit (d≈ 2�N), the director 0eld lines are
strongly distorted, and we approximate them by circular segments as illustrated in Fig. 48b, for
the third region. The radius of the circle is determined by the boundary condition (8.14) of
the director. With decreasing separation of the two particles, the director 0eld should change
continuously from n∞ at d�2�N to the ansatz nc at small d. Hence, we choose n(r) as a
weighted superposition of nc and n∞:

n(r)˙ 'inc + (1− 'i)n∞ ; (8.22)

where the free parameter 'i follows from a minimization of the free energy in region i with
respect to 'i.
As in the case of two parallel plates, the interaction energy is de0ned relative to the total

free energy of in0nite separation:

ULC(d) = F(d)− F(d→ ∞) : (8.23)

In calculating ULC, we employ the free energy densities of Eqs. (8.6) and (8.7) and the surface
potential of Eq. (8.10), neglecting the non-harmonic terms in S. The volume integrals cannot
be performed analytically without further approximations which we justi0ed by a comparison
with a numerical integration. The 0nal expression of ULC is very complicated, and we refer the
reader to Ref. [15] for its explicit form. We checked that regions i = 1; : : : ; 9 are suNcient to
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Fig. 49. The liquid crystal mediated interaction ULC in units of kBT as a function of the particle separation d. The
interaction is shown at Tc; Tc + 1K; Tc + 3K; and Tc + 11K. It strongly depends on temperature. Large inset: ULC
is composed of an attractive and repulsive part. Small inset: A weak repulsive barrier occurs at d≈ 60 nm.

calculate ULC. The contribution of region 9 to the interaction energy is less than 5%. Hence,
the orientational order outside these nine regions is not relevant for ULC.
We subdivide the interaction energy in an attractive part which results from all terms in the

free energy depending on the order parameter S or its gradient, only. The repulsive part is due
to the elastic distortion of the director 0eld and a deviation from the homeotropic orientation
at the particle surfaces. All the graphs, which we present in the following, are calculated with
the Landau parameters of the compound 8CB [38], i.e., a0 = 0:12× 10−7 erg=cm3 K; b=3:07×
10−7 erg=cm3; c=2:31×10−7 erg=cm3, and L1=1:8×10−6 dyn, which gives Tc−T ∗=b2=(27a0c)=
1:3K. The surface-coupling constants are WS=1erg=cm2 and Wn=5erg=cm2. In the large inset
of Fig. 49 we plot the attractive and repulsive contribution at the clearing temperature Tc in
units of the thermal energy kBT . As in the case of two parallel plates, the total interaction
energy exhibits a deep potential well with an approximate width of 2�NI. At larger separations,
it is followed by a weak repulsive barrier whose height is approximately 1:5kBT , as indi-
cated by the small inset in Fig. 49. If d�2�N; ULC decays exponentially: ULC ˙ exp(−d=�N).
Fig. 49 illustrates further that the depth of the potential well, i.e., the liquid crystal mediated at-
traction of two particles decreases considerably when the dispersion is heated by several Kelvin.
That means, the interaction can be controlled by temperature. It is turned o9 by heating the
dispersion well above Tc. The same holds for the weak repulsive barrier. As expected, both
the depth of the potential well and the height of the barrier decrease with the surface-coupling
constants, where WS seems to be more important [15].

8.3.3. Van der Waals and electrostatic interactions
The van der Waals interaction of two thermally >uctuating electric dipoles decays with the

sixth power of their inverse distance, 1=r6. To arrive at the interparticle potential of two
macroscopic objects, a summation over all pair-wise interactions of >uctuating charge dis-
tributions is performed. In the case of two spherical particles of equal radii a; the following,
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always attractive, van der Waals interaction results [202]:

UW =−A
6

[
2a2

d(d+ 4a)
+

2a2

(d+ 2a)2
+ ln

d(d+ 4a)
(d+ 2a)2

]
: (8.24)

Here d is the distance between the surfaces of the particles, and A is the Hamaker constant.
For equal particles made of material 1 embedded in a medium 2, it amounts to [202]

A=
3
4
kBT

(
'1 − '2
'1 + '2

)2
+
3hBuv
16

√
2
(n21 − n22)2
(n21 + n

2
3)3=2

; (8.25)

where '1 and '2 are the static dielectric constants of the two materials, and n1 and n2 are the
corresponding refractive indices of visible light. The relaxation frequency Buv belongs to the
dominant ultraviolet absorption in the dielectric spectrum of the embedding medium 2. Typical
values for silica particles immersed into a nematic liquid crystal are '1 =3:8; n1 =1:45; '2 =11;
n2 = 1:57; and Buv = 3 × 1015 s−1 [15]. As a result, the Hamaker constant equals A = 1:1 kBT .
Note, that for separations d�a the particles are point-like, and the van der Waals interaction
decays as 1=d6. In the opposite limit, d�a; it diverges as a=d.
We stabilize the colloidal dispersion against the attractive van der Waals forces by employing

an electrostatic repulsion. We assume that each particle carries a uniformly distributed surface
charge whose density qs does not change under the in>uence of other particles. Ionic impurities
in the liquid crystal screen the surface charges with which they form the so-called electrostatic
double layer. For particles of equal radius a embedded in a medium with dielectric constant '2;
the electrostatic two-particle potential is described by the following expression [202]:

UE =−�kBT aq2s
z2e20np

ln(1− e−Cd) : (8.26)

Here, e0 is the fundamental charge, and z is the valence of the ions in the solvent, which have
a concentration np. The range of the repulsive interaction is determined by the Debye length

C−1 =
√
'2kBT=(8�e20z2np) ; (8.27)

whereas the surface-charge density qs controls its strength. The potential UE decays exponentially
at d�C−1. Expression (8.26) is derived via the Derjaguin approximation [53,202], which is
only valid for d; C−1�a. In the following, we take a monovalent salt (z = 1); choose '2 = 11;
and vary np between 10−4 and 10−3 mol=l. Then, at room temperature the Debye length C−1
ranges from 10 to 3.5 nm. Together with typical separations d not larger than a few coherence
lengths �N and a=250 nm; the Derjaguin approximation is justi0ed. Furthermore, we adjust the
surface-charge density around 104e0=�m2. The ranges of np and qs are well accessible in an
experiment.
In Fig. 50 we plot the electrostatic and the van der Waals interactions and their sum in

units of kBT . The surface-charge density qs is 0:5 × 104e0=�m2 and C−1 = 8:3 nm. All further
parameters besides the Hamaker constant A are chosen as mentioned above. We increased A
from 1.1 to 5.5. Even then it is clearly visible that the strong electrostatic repulsion determines
the interaction for d¡ 30 nm; the dispersion of particles is stabilized. At about 55 nm, UE+UW
exhibits a shallow potential minimum (see inset of Fig. 50), and at d�C−1; the algebraic decay
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Fig. 50. The electrostatic (dashed) and van der Waals (dotted) interaction and their sum UE+UW (full line) in units
of kBT as a function of particle separation d. The parameters are chosen according to the text. Inset: A shallow
potential minimum appears at d≈ 55 nm.

Fig. 51. The total two-particle interaction ULC+UE+UW as a function of particle separation d for various tempera-
tures. A complete >occulation of the particles occurs within a temperature range of about 0.3 K. qs=0:5×104e0=�m2;
C−1 = 8:3 nm, and further parameters are chosen according to the text.

of the van der Waals interaction takes over. In the following subsection, we investigate the
combined e9ects of all three interactions for the Hamaker constant A= 1:1.

8.3.4. Flocculation versus dispersion of particles
In Fig. 51 we plot the total two-particle interaction ULC +UE +UW as a function of particle

separation d for various temperatures. We choose qs = 0:5 × 104e0=�m2 and C−1 = 8:3 nm. At
4.5K above the transition temperature Tc; the dispersion is stable. With decreasing temperature,
a potential minimum at 0nite separation develops. At TFD = Tc + 0:54K; the particle doublet or
aggregated state becomes energetically preferred. We call TFD the temperature of >occulation
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Fig. 52. In comparison to Fig. 51 the surface-charge density is increased to 0:63×104e0=�m2. As a result, >occulation
does not occur.

transition. Below TFD; the probability of 0nding the particles in the aggregated state is larger
than the probability that they are dispersed. Already at Tc + 0:3K the minimum is 7 kBT deep,
and all particles are condensed in aggregates. That means, within a temperature range of about
0.3K there is an abrupt change from a completely dispersed to a fully aggregated system,
reminiscent to the critical >occulation transition in colloidal dispersions employing polymeric
stabilization [162,202]. Between d=30 and 50 nm, the two-particle interaction exhibits a small
repulsive barrier of about 1:5 kBT . Such barriers slow down the aggregation of particles, and
one distinguishes between slow and rapid >occulation. The dynamics of rapid >occulation was
0rst studied by Smoluchowski [215]. Fuchs extended the theory to include arbitrary interaction
potentials [82]. However, only after Derjaguin and Landau [54] and Verwey and Overbeek [229]
incorporated van der Waals and electrostatic interactions into the theory, became a comparison
with experiments possible. In our case, the repulsive barrier of 1:5 kBT slows down the doublet
formation by a factor of three, i.e., it does not change very dramatically if the barrier is reduced
to zero.
If the surface-charge density qs is increased to 0:63× 104e0=�m2; the dispersed state is ther-

modynamically stable at all temperatures above Tc; as illustrated in Fig. 52. An increase of the
Debye length C−1; i.e., the range of the electrostatic repulsion, has the same e9ect.
In Fig. 53 we present >occulation phase diagrams as a function of temperature and surface-

charge density for various Debye lengths C−1. The inset shows one such diagram for C−1 =
8:3 nm. The full line represents the >occulation temperature TFD as a function of qs. For tem-
peratures above TFD; the particles stay dispersed while for temperatures below TFD the system
is >occulated. To characterize the aggregated state further, we have determined lines in the
phase diagram of C−1 = 8:3 nm; where the escape time tesc of Eq. (8.21) is, respectively, ten
(dash-dotted) or hundred (dotted) times larger than in the case of zero interaction. These lines
are close to the transition temperature TFD; and indicate again that the transition from the dis-
persed to a completely aggregated state takes place within less than one Kelvin. The large plot
of Fig. 53 illustrates the >occulation temperature TFD as a function of qs for various Debye
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Fig. 53. Flocculation phase diagrams as a function of temperature and surface-charge density for various Debye
lengths C−1. Inset: Phase diagram for C−1 = 8:3 nm. The full line represents the >occulation temperature TFD as
a function of qs. The dash-dotted and dotted lines indicate escape times from the minimum of the interparticle
potential which are, respectively, ten or hundred times larger than in the case of zero interaction. From Ref. [16].

lengths C−1. TFD increases when the strength (qs) or the range (C−1) of the electrostatic re-
pulsion is reduced. The intersections of the transition lines with the T = Tc axis de0ne the
“>occulation end line”. In the parameter space of the electrostatic interaction (surface charge
density qs versus Debye length C−1), this line separates the region where we expect the >oc-
culation to occur from the region where the system is dispersed for all temperatures above Tc
(see Ref. [16]).

8.3.5. Conclusions
Particles dispersed in a liquid crystal above the nematic-isotropic phase transition are sur-

rounded by a surface-induced nematic layer whose thickness is of the order of the nematic
coherence length. The particles experience a strong liquid crystal mediated attraction when their
nematic layers start to overlap since then the e9ective volume of liquid crystalline ordering
and therefore the free energy is reduced. A repulsive correction results from the distortion of
the director 0eld lines connecting two particles. The new colloidal interaction is easily con-
trolled by temperature. In this section we have presented how it can be probed with the help
of electrostatically stabilized dispersions.
For suNciently weak and short-ranged electrostatic repulsion, we observe a sudden >occu-

lation within a few tenth of a Kelvin close to Tc. It is reminiscent to the critical >occulation
transition in polymer stabilized colloidal dispersions [202]. The >occulation is due to a deep
potential minimum in the total two-particle interaction followed by a weak repulsive barrier.
Thermotropic liquid crystals represent polar organic solvents, and one could wonder if elec-
trostatic repulsion is realizable in such systems. In Ref. [101] complex salt is dissolved in
nematic liquid crystals and ionic concentrations of up to 10−4 mol=l are reported which give
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rise to Debye lengths employed in this section. Furthermore, when silica spheres are coated
with silanamine, the ionogenic group [ = NH+2 OH

−] occurs at the particle surface with a den-
sity of 3× 106 mol=�m2. It dissociates to a large amount in a liquid crystal compound [59]. In
addition, the silan coating provides the required perpendicular boundary condition for the liquid
crystal molecules. These two examples illustrate that electrostatic repulsion should be accessible
in conventional thermotropic liquid crystals, and we hope to initiate experimental studies which
probe the new colloidal force. Our work directly applies to lyotropic liquid crystals [51], i.e.,
aqueous solutions of non-spherical micelles, when the nematic-isotropic phase transition is con-
trolled by temperature [181,180]. They are appealing systems since electrostatic stabilization is
more easily achieved. When the phase transition is controlled by the micelle concentration 6m;
as it is usually done, then our diagrams are still valid but with temperature replaced by 6m.
In polymer stabilized dispersions, we 0nd that the aggregation of particles sets in gradually

when cooling the dispersion down towards Tc. This is in contrast to electrostatic stabilization
where >occulation occurs in a very narrow temperature interval (see Ref. [16]).

9. Final remarks

In this article we have demonstrated that the combination of two soft materials, nematic
liquid crystals and colloidal dispersions, creates a novel challenging system for discovering and
studying new physical e9ects and ideas.
Colloidal dispersions in a nematic liquid crystal introduce a new class of long-range two-

particle interactions mediated by the distorted director 0eld. They are of either dipolar or
quadrupolar type depending on whether the single particles exhibit the dipole, Saturn-ring or
surface-ring con0guration. The dipolar forces were veri0ed in an excellent experiment by Poulin
et al. [179]. Via the well-known >exoelectric e9ect [147], strong director distortions in the dipole
con0guration should induce an electric dipole associated with each particle. It would be inter-
esting to study, both theoretically and experimentally, how this electric dipole contributes to the
dipolar force. On the other hand, there exists a strong short-range repulsion between particles
due to the presence of a hyperbolic point defect which prevents, e.g., water droplets from coa-
lescing. Even above the nematic-isotropic phase transition, liquid crystals mediate an attractive
interaction at a length scale of 10 nm. Its strength is easily controlled by temperature, and it
produces an observable e9ect since it can induce >occulation when the system is close to the
phase transition.
To understand colloidal dispersions in nematics in detail, we have performed an extensive

study of the three possible director con0gurations around a single particle. These con0gurations
are ideal objects to investigate the properties of topological point and line defects. The dipolar
structure should exhibit a twist in conventional calamitic compounds. The transition from the
dipole to the Saturn ring can be controlled, e.g., by a magnetic 0eld which presents a means
to access the dynamics of topological defects. Furthermore, we have studied how the strength
of surface anchoring in>uences the director con0guration. Surface e9ects are of considerable
importance in display technology, and there is fundamental interest in understanding the coupling
between liquid crystal molecules and surfaces. In addition, we have clari0ed the mechanism
due to which the saddle-splay term in the Frank free energy promotes the formation of the
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surface-ring structure. The Stokes drag and Brownian motion in nematics have hardly been
studied experimentally. Especially the dipole con0guration with its vector symmetry presents an
appealing object. We have calculated the Stokes drag for a 0xed director 0eld. However, we
have speculated that for small Ericksen numbers (Er�1) >ow-induced distortions of the director
0eld result in corrections to the Stokes drag which are of the order of Er. Preliminary studies
support this conclusion. Furthermore, for growing Er they reveal a highly non-linear Stokes
drag whose consequences seemed to have not been explored in colloidal physics. Finally, we
have demonstrated that the dipole, consisting of the spherical particle and its companion point
defect, also exists in more complex geometries, and we have studied in detail how it forms.
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