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1. Introduction

In colloidal dispersions particles whose size ranges from 10 nm to 10 ym are
suspended in a host medium. One distinguishes between emulsions, where
surfactant-coated liquid droplets are dispersed in a fluid environment, col-
loidal suspensions, where the particles are solid, and aerosoles, with fluid
or solid particles floating in a gaseous phase. As such these systems can
be found in our everyday life, e.g., in food, with milk being the best-
known fat-in-water emulsion, in drugs, cosmetics, paints, and ink. With
berg lakes in the Canadian Rocky mountains or just simple fog, nature also
creates its colloidal dispersions. It is of vital interest to keep the particles
in the dispersed state since in the aggregated state the characteristics of
colloidal systems change dramatically. There exists a whole zoo of interac-
tions between particles whose delicate balance determines the stability of
a colloidal dispersion. Conventionally, the attractive van der Waals force is
compensated by a screened Coulombic or steric interaction [1]. Recently,
fluctuation-induced Casimir forces either in binary fluids close to the crit-
ical point [2, 3] or in liquid crystals [4, 5, 6, 7] and also depletion forces
in binary mixtures of small and large spheres [1, 8, 9, 10] have attracted
a lot of interest. Furthermore, colloidal dispersions are used to study such
fundmental questions as the Brownian motion of suspended particles in
connection with long-time tails in the velocity auto-correlation function
[11, 12, 13] and with regard to hydrodynamic interactions [1, 14]. The ag-
gregation of particles leads to fractal structures [15, 16, 17]. If the particles



carry an additional dipole moment, as in electrorheological fluids or in mag-
netic emulsions, characteristic chain structures occur under the influence of
external fields [18, 19].

Here we deal with the suspension of particles in an anisotropic fluid,
i.e., a nematic liquid crystal. New types of colloidal forces arrive as we
review in the following. In the nematic phase they are mediated by elastic
distortions of the director field and thus have long range. On contrary, above
the nematic-isotropic phase transition temperature Tn; they are governed
by a nematic wetting layer at the surface of the particles and are therefore
of short range. Furthermore, in the nematic phase topological point and line
defects in the director field occur which strongly determine the physics of
liquid crystal colloidal dispersions. Both, the nematic wetting layer above
Tnr1 and the core of a defect in the director field require the alignment
tensor Q as generalized order parameter to describe the liquid crystalline
ordering.

In multiple nematic emulsions, e.g., surfactant-coated water droplets
are dispersed in large nematic drops which are surrounded by the water
phase [20, 21]. Surprisingly, as observed by polarizing microscopy, the wa-
ter droplets form chains. Such structures have only been seen, so far, under
the influence of external fields, as mentioned above. Moreover, a high mag-
nification of the chains revealed that the water droplets did not touch each
other. All the observations can be explained by the presence of the nematic
host medium below T taking into account homeotropic boundary con-
ditions at all the surfaces. Figure 1 illustrates that the water droplets are
separated by the presence of hyperbolic point defects in the director field
which mediate a strong repulsion between the droplets. As soon as the host
medium is heated into the isotropic phase, the water droplets start to dif-
fuse around and coalesce upon touching each other. This effect indicates
the existence of a flocculation transition.

Multiple nematic emulsions are an ideal laboratory to study topological
point defects [22, 23, 24, 25]. Their charge ¢ is given by the number of times
the unit sphere is wrapped by all the directors on a surface enclosing the
defect core. The sign of ¢ has no meaning due to the head-tail symmetry of
the orientational order. Note that the directors close to a point defect are
reversed if the defect is moved around a £+1/2 disclination line [24]. There-
fore, source and sink fields are equivalent. In addition, two point charges ¢;
and g9 can give the respective total charges g1 + g2 or g1 — g2| depending on
the global boundary conditions. It is obvious that the large nematic drop
and each water droplet in Fig. 1 carry a charge ¢ = +1. One single water
droplet fits perfectly into the nematic drop. Every additional water droplet
has to be accompanied by a defect structure of charge ¢ = +1 so that the
total charge of the nematic drop remains ¢ = +1. In Fig. 1 this is achieved
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Figure 1. The director field lines of a nematic drop containing a string of three water
droplets. Each droplet stands for a radial point defect of charge ¢ = +1. To achieve the
total charge ¢ = +1 of the nematic drop, the water droplets are separated by hyperbolic
point defects of charge ¢ = +1.

by placing hyperbolic point defects between the water droplets. They can
be identified as black dots under the polarizing miscroscope. A spherical
particle with an attached hyperbolic point defect has a total charge ¢ =0
as we will illustrate below.

In the following we shortly review some work of the authors [20, 26,
27, 28, 29, 30, 31, 32] related to liquid crystal colloidal dispersions. It is not
our intention to give a complete overview of the field and an extensive list
of references. They can be found in Refs. [33, 32].

In section 2 we first address colloidal dispersions in a nematic solvent.
They exhibit long range two-particle interactions. In Subsection 2.1 we
give an overview of the calculational methods which are employed to han-
dle such systems. For the understanding of nematic colloidal dispersions,
it is helpful to first consider the simplest possible configuration consisting
of one particle and a uniform director field at infinity. This system already
allows for several structures which we discuss in Subsection 2.2. Then, in
Subsection 2.3, we shortly address the two-particle interactions in a ne-
matic solvent. Finally, in Subsection 2.4, we summarize numerical work on
colloidal dispersions in complex geometries concentrating on the structures
seen in multiple nematic emulsions. In Section 3 we address colloidal dis-
persions where the host medium is already in the isotropic state but close



to the nematic-isotropic phase transition. Interactions in these systems are
short ranged so that their behavior is similar to classical colloidal disper-
sions. Furthermore, they are strongly attractive close to Ty, and they can
be switched off by raising temperature. In Subsection 3.2 we show how
the Landau-de Gennes phenomenological theory is used to describe partial
liquid crystal ordering at temperatures above T ;. From such a study, the
properties of the two-particle interaction mediated by the liquid crystal can
be deduced. We analyze the behavior of an isotropic liquid crystal colloidal
dispersion and show that neutral micron-sized spherical particles do not
stay dispersed but rather form aggregates. Subsection 3.3 is dedicated to
an isotropic liquid crystal dispersion of equally charged particles which stay
dispersed well above Tr. We demonstrate that the liquid crystal mediated
interaction can induce a sharp flocculation transition from the dispersed
into the flocculated state by lowering temperature.

2. Colloidal Dispersions in a Nematic Solvent

2.1. WHAT IS THE DIRECTOR FIELD?

To understand the physics of nematic colloidal dispersions, it is crucial to
determine the director field n(r) around the particles. It follows from a
minimization of the relevant free energy as a functional of n(r).

2.1.1. Free Energy
The total free energy consists of bulk and surface terms,

Fy = el+F24+FH+Fs=/d3r(fel+f24+fg)+/d5fs. (1)

Here fe; + foa stands for the Oseen-Zocher-Frank free energy density [34,
35, 36, 37] with

1
for = E[Kl (divn)? + Ks(n - curln)? + K3(n x curln)?] (2)
and
Koy . .
fos = —lev(ndlvn +n x curln) . (3)

The coefficients K1, Ko, K3, and K4 denote, respectively, the splay, twist,
bend, and saddle-splay elastic constants. The saddle-splay term is a pure
divergence and can be transformed into integrals over all surfaces of the
system,

1
Foy = —§K24 / dS - (ndivn + n X curln) , (4)



where it prefers the formation of a saddle-like structure. A further surface
term with a free energy density K13 div(ndivn) will not be considered in
the following [38, 39].

In the one-constant approximation, K = K; = Ko = K3, the Frank free
energy takes the form

K — Koy

K
Fel = E /d?’T(V,nJ)Q + 9

/dS - (ndivh + n X curln) . (5)
It is often used to obtain a basic understanding of a system without having
to deal with effects due to elastic anisotropy. The bulk term is equivalent
to the non-linear sigma model in statistical field theory [40, 25] or the
continuum description of the exchange interaction in a ferromagnet [41].
The magnetic free energy density fg reads

fu=-SX(n B - 7] (©
where the magnetic anisotropy Ay = x| — x1 is defined as the difference
of the two essential magnetic susceptibilities x| and x| for magnetic fields
applied, respectively, parallel or perpendicular to the director. It is positive
and typically of the order of 10~7 [37]. By adding a term —AxH?/2 on the
right-hand side of Eq. (6), we shift the reference point in order that the
magnetic free energy of a completely aligned director field is zero. This will
be useful in Subsection 2.2 where the free energy of the infinitely extended
director field around a single particle is calculated. The balance between
elastic and magnetic torques on the director defines an important length
scale, the magnetic coherence length

_ | K3

Suppose the director is planarly anchored at a wall, and a magnetic field is
applied perpendicular to it. Then & gives the distance from the wall that
is needed to orient the director along the applied field [37]. The coherence
length tends to infinity for H — 0.

Finally, the surface free energy of Rapini-Papoular is employed to take
into account the anchoring of the director at boundaries:

w

fs =5 l1— o). 0

The unit vector & denotes some preferred orientation of the director at the
surface, and W is the coupling constant. It varies in the range 10~7 — 1073



J/m? as reviewed by Blinov et al. [42]. From a comparison between the

Frank free energy and the surface energy, one arrives at the extrapolation
length [37]

552% : (9)

It signifies the strength of the anchoring. Take a particle of radius a in a
nematic environment with an uniform director field at infinity (see Sub-
section 2.2.) The Frank free energy of this system is proportional to Ksa
whereas the surface energy scales as Wa?. At strong anchoring, i.e., for
Wa? > Ksa or {5 < a, the energy to turn the director away from its pre-
ferred direction & at the whole surface would be much larger than the bulk
energy. Therefore, it is preferable for the system that the director points
along ©. However, n can deviate from & in an area of order £ga. In Subsec-
tion 2.2.4 we will use this argument to explain a ring configuration around
the particle. Rigid anchoring is realized for £ — 0. Finally, £5 > a means
weak anchoring, where the influence of the surface is minor. Since in our
discussion we have always referred s to the radius a, it is obvious that
the strength of the anchoring is not an absolute quantity but depends on
characteristic length scales of the system.

2.1.2. Minimization procedures

The director field n(r) in a given geometry follows from a minimization of
the total free energy Fy, = Fy + Fy4 + Fg + Fs under the constraint that
n is a unit vector:

0Fa =0 with n-n=1. (10)

Even in the one-constant approximation and under the assumption of rigid
anchoring of the director at the boundaries, this is a difficult problem to
solve because of the additional constraint. Typically, full analytical solu-
tions only exist for one-dimensional problems, e.g., for the description of
the Fréedericksz transition [43, 37], or in two dimensions when certain sym-
metries are assumed [26]. To handle the constraint, one can use a Lagrange
parameter or introduce an appropriate parametrization for the director,
e.g., a tilt (©) and twist (®) angle, so that the director in the local coordi-
nate basis takes the form

n = (sin® cos @, sin O sin @, cos O) . (11)

If an accurate analytical determination of the director field is not pos-
sible, there are two strategies. First, an ansatz function is constructed that
fulfills the boundary conditions and contains free parameters. Then, the
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director field follows from a minimization of the total free energy in the
restricted space of functions with respect to the free parameters. This strat-
egy was successfully applied to the director field around a single spherical
particle [20, 26]

Here we concentrate on numerical solutions of the Euler-Lagrange equa-
tions corresponding to the variational problem formulated in Eq. (10). They
are equivalent to functional derivatives of Fy,[©, @], where we use the tilt
and twist angle of Eq. (11) to parametrize the director:

0Fn,  O0FyaOn;
50  n; 00 =0 (12)
0Fn  O0FyaOn;
5®  dn; 09 =0 (13)

Einstein’s summation convention over repeated indices is used. To arrive
at the equations above for ©(r) and ®(r), we have employed a chain rule
for functional derivatives [27]. These chain rules are useful in numerical
problems since they allow to write the Euler-Lagrange equations, which
can be quite complex, in a more compact form. For example, the bulk and
surface equations that are solved in Subsection 2.2 for a single spherical
particle could only be calculated with the help of the algebraic program
Maple after applying the chain rules.

Typically, a starting configuration for the director field is taken and
relaxed on a grid via the Newton-Gauss-Seidel method [44]. It is equivalent
to Newton’s iterative way of determining the zeros of a function but now
generalized to functionals. We illustrate it here for the tilt angle ©:

§F,/50(r)

®new(r) - @Old(r) - W '

(14)

There are two possibilities to implement the method numerically. Both will
be used in the following subsections. In the first case the grid for the numer-
ical investigation is defined by the coordinate lines. To determine, e.g., the
axially symmetric director field around a spherical particle in Subsection
2.2, it is appropriate to choose spherical coordinates consisting of the radial
distance r and the polar angle 6. Then the boundary of the integration area
coincides with the coordinate line r = 1. By using a modified radial coordi-
nate p = 1/r2, the infinitly extended region around the particle is mapped
onto the unit sphere, i.e., a region of finite extent. The director n is writ-
ten in the local spherical coordinate basis (e,, eg, €4) according to Eq. (11).
Following the chain rules (12) and (13) and with the help of the algebraic
program Maple, the Euler-Lagrange equations are determined analytically.
Then, they are discretized by the method of finite differences for a discrete
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Figure 2. Triangulation of the integration area to simulate a chain of two water droplets
in a big nematic drop under the assumption of rotational symmetry about the chain axis.
Between the small spheres a refined net of triangles is chosen.

set of grid points r[44]. Finally, §2F,/6©%(r) is calculated numerically as
the derivative of §F,, /0O (r) with respect to O(r) at the grid point r (for
further details see Ref. [27]).

If the geometry of the system is more complex, the method of finite ele-
ments is appropriate. In Subsection 2.4, the chaining of two water droplets
in a big nematic drop is investigated in analogy to Fig. 1. Assuming rota-
tional symmetry about the chain axis, the relevant integration volume is
two dimensional (see Fig. 2). It is subdivided into finite elements, which in
the present case are triangles. In doing so, the boundaries of the complex
geometry are well approximated by polygons. Between the two spheres in
Fig. 2 a refinement of the grid is chosen to better approximate the hy-
perbolic point defect. The free energy Fy, is discretized on the triangular
grid (for details see [28]) and then minimized with the help of the Newton-
Gauss-Seidel method. Both the first and second derivatives in Eq. (14) are
performed numerically with respect to ©(r) at the grid point r.

2.2. ONE-PARTICLE PROPERTIES

In this subsection we ask which director field configurations do occur when
one spherical particle that prefers a radial anchoring of the director at its
surface is placed into a nematic solvent uniformly aligned at infinity. This
constitutes the simplest problem one can think of, and it is a guide to the
understanding of more complex situations.

2.2.1. The Three Possible Configurations
If the directors are rigidly anchored at the surface, the particle carries a
topological charge ¢ = 1. Because of the boundary conditions at infinity,
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Figure 3. A spherical particle with a preferred homeotropic anchoring at its surface that
is placed into a uniformly aligned nematic liquid crystal exhibits three possible structures:
the dipole configuration where the particle is accompanied by a hyperbolic hedgehog, the
Saturn-ring configuration where the particle is surrounded by a —1/2 disclination ring
at the equator, and the surface-ring configuration.
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the total charge of the whole system is zero; therefore, the particle must
nucleate a further defect in its nematic environment. One possibility is
a dipolar strucure where the particle and a hyperbolic hedgehog form a
tightly bound object which we call dipole for short (see Fig. 3) [20, 46, 26,
45, 27]. The topological charges +1 of a radial hedgehog, represented by
the particle, and of a hyperbolic point defect “add up” to a total charge
of zero. The dipole configuration was thoroughly studied with the help of
ansatz functions which were motivated by the electric field solution of the
electrostatic analogue: a charged metal sphere placed into a uniform electric
field [20, 26]. The outcome of the investigation was that the defect sits
close to the spherical particle and that thermal fluctuations of its position
are invisibly small [20, 26]. The hyperbolic hedgehog can be opened up
to a topologically equivalent —1/2 disclination ring. When moved to the
symmetric position, where it encircles the spherical particle at the equator
(see Fig. 3), the Saturn-ring configuration occurs [47, 48, 46, 26, 45, 27].
In the following, it is demonstrated that the transition to the Saturn ring
occurs for decreasing particle size and when a magnetic field is applied. The
presented calculations show that a non-symmetric position of the defect ring
is never stable. When the surface anchoring strength W is lowered (see Fig.
3), the core of the disclination ring prefers to sit directly at the surface of the
particle [46, 27]. For sufficiently low W, the director field becomes smooth
everywhere, and a ring of tangentially oriented directors is located at the
equator of the sphere [48, 46, 45, 27]. All the three possible configurations,
the dipole (see Ref. [20, 49, 21, 50]), the Saturn ring (see Ref [51]), and the
surface ring (see Ref. [52]) have been seen in experiments.

2.2.2. The Twisted Dipole Configuration

A careful numerical study of the dipole configuration as a function of the
reduced splay (K;/K3) and twist (K2/K3) constants reveals the following
picture illustrated in Fig. 4. For large twist constants, the dipole configu-
ration occurs as drawn in Fig. 3. The distance rg of the defect from the
center of the sphere does hardly depend on the elastic constants. Its value
rq = 1.26 £ 0.02 agrees very well with analytic calculations based on a
generalized electric-field ansatz [26]. As the twist constant is lowered or the
splay constant is increased, a twisted dipole configuration evolves. Figure 5
shows the new structure where the directors close to the hyperbolic hedge-
hog are tilted relative to the drawing plane. Furthermore, it is found that
the sphere-defect distance ry starts to grow beyond the twist transition
line. The twisted dipole should appear in typical calamatic liquid crystals
like MBBA, 5CB, and PAA (see Fig. 4), and it should be visible under a
polarizing microscope when viewed along its symmetry axis.

The twist transition breaks the mirror symmetry of the dipole, which
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Phase diagram of the twist transition as a function of the reduced splay

Nail picture of a close-up of the twisted dipole configuration. Around the
hyperbolic hedgehog the directors are tilted relative to the drawing plane.

then becomes a chiral object. This is an interesting example of a symmetry
breaking phase transition. Since left and right-handed dipole have the same
energy, the transition should be of second order as predicted by a conven-
tional Landau expansion of the free energy in an appropriate twist order

parameter [27].
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Figure 6. a) Coordinates (rq,0q) for a —1/2 disclination ring with a general position
around the spherical particle; b) Circular cross section of the —1/2 disclination ring with
radius R and core radius rc.

2.2.3. Dipole versus Saturn ring

Ring disclinations:

The energy of the hyperbolic point defect is not correctly calculated in the
numerical treatment since the Frank free energy does not apply in its core.
However, a good approximation for the core energy is K3 X r, where r, =
10 nm denotes the radial extension of the core [53]. Since the free energy of
the dipole amounts to around 107 K3a, where a is the particle radius, we can
consider particle sizes down to 100 nm still keeping the energy contribution
of the point defect smaller than 1 %. This is beyond the numerical accuracy,
and therefore no energetical correction for the point defect is included.

The situation for ring defects is different since the line energy of the core
is of the order of K;. As starting configuration in the numerical minimiza-
tion, an analytical form of the director configuration of a —% disclination
ring around a spherical particle is taken (see Ref. [26]). The general po-
sition of this ring is determined by the radial (r;) and the angular (6,)
coordinates as illustrated by Fig. 6a). During the relaxation the disclina-
tion ring (04 # 0, 7) basically stays at the position where it is placed. There
seems to be a “numerical” barrier for the defect to cross a grid line. This
phenomenon is used to investigate the free energy as a function of r4 and
04 which gives an instructive insight into potential barriers for a transition
between dipole and Saturn-ring configuration. The results are equivalent to
determining the director field for a fixed position of the disclination ring.
Again, the numerical integration of the Frank free energy F}, does not give
the right energy of the disclination. To correct this deficieny, we use the
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formula
F = Fy — Fuliorys + Feja X 2mrgsinby (15)

The quantity Fynl,,,,, denotes the numerically calculated free energy of a
toroidal region of cross section mR? around the disclination ring [see Fig.
6b)]. Its volume is mR? X 27rysin 6y, where the coordinates (rq,6,) of the
ring are determined by searching for the maximum of the Frank free energy
density fe;. The value of Fy|,...¢ is replaced by the last term on the right-
hand side of Eq. (15), where

T 1 R
Fy= 7K (§+ln—) (16)

Te

is the line energy of a i% disclination in the one-constant approximation
(K; = K) with its core and elastic contribution [22]. Note that Eq. (16) is
not valid if a magnetic field H is applied. In the general case (K7 # Ko #
K3) an analytic expression for the elastic energy does not exist. However,
one can use a rough approximation for the core line energy F. by averaging
over the Frank constants:

7r

F. =
8

(K1 + Ky + K3)/3 . (17)
It should also apply to H # 0. To find out how large the cross section
7 R? of the cut torus has to be, the formula (15) and the line energy of Eq.
(16) are employed for constant r. and varying R. To be consistent, the free
energy F should not depend on R. Within an error of less than 1 %, this is
the case if TR? is equal or larger than 3ApA#/2 where Ap and A are the
lattice constants of the grid and p = 1/r? is the modified radial coordinate
in units of 1/a? (see Subsection 2.1.2). To study the transition between the
dipole and the Saturn ring as a function of particle size, TR = 25ApAf/2
is chosen and Eq. (16) is employed for different r.. When a magnetic field
is applied, R = . is determined from 7r2 = 3ApA@/2, and the core energy
of Eq. (17) is used.

By performing the correction for the line energy of the disclination ring,
a second length scale besides the particle radius a enters in our problem:
the core radius 7. = 10 nm. This explains the physical mechanism, why the
director configuration around a particle should depend on its size. If finite
surface anchoring is assumed, or if a magnetic field is applied further length
scales exist. They were already introduced in Subsection 2.1.1.

Effect of particle size:
In Fig. 7 the free energy F' in units of 7K3a is plotted as a function of
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Figure 7. The free energy F' in units of 7K3a as a function of the angular coordinate
64. The parameter of the curves is the particle size a. Further parameters are indicated
in the inset.

the angular coordinate 6; of the disclination ring. For constant 64, the
free energy F' was chosen as the minimum over the radial coordinate rg.
The particle radius a is the parameter of the curves, and the one-constant
approximation is employed. Recall that 8; = 7/2 and 6; = 7 correspond,
respectively, to the Saturn-ring or the dipole configuration. Clearly, for
small particle sizes (¢ = 180 nm) the Saturn ring is the absolutely stable
configuration, and the dipole enjoys some metastability. However, thermal
fluctuations cannot induce a transition to the dipole since the potential
barriers are much higher than the thermal energy k7. E.g., a barrier of
0.17K3a corresponds to 1000 kg7 (T = 300K, a = 1 um). At a =~ 270 nm,
the dipole assumes the global minimum of the free energy, and finally the
Saturn ring becomes unstable at a =~ 720 nm. The scenario agrees with the
results of Ref. [26] where an ansatz function for the director field was used.

For the reduced radial coordinate of the disclination ring, one finds
r¢/a = 1.12 for 270nm particles and r4/a = 1.10 for 720 nm particles,
indepent of the angular coordinate. Only in the region where the ring closes
to the hyperbolic hedgehog, does 4 increase sharply to the value of 1.26.
Note that smaller spheres push the ring further away from the surface. The
radial position r4/a = 1.10 agrees very well with analytical results obtained
by using an ansatz function (see Ref. [26]) and with numerical calculations
based on a Monte-Carlo minimization [54].
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Figure 8. The free energy F' in units of wK3sa as a function of the angular coordinate
04. The parameter of the curves is the reduced inverse magnetic coherence length a/&5.
Further parameters are indicated in the inset.

Effect of a magnetic field:
A magnetic field applied along the symmetry axis of the dipole can induce
a transition to the Saturn-ring configuration. This can be understood from
a simple back-of-the-envelope calculation. Let us consider high magnetic
fields, i.e., magnetic coherence lengths £ much smaller than the particle
size a. For £ < a, the directors are basically aligned along the magnetic
field. In the dipole configuration, the director field close to the hyperbolic
hedgehog cannot change its topology. The field lines are “compressed” along
the symmetry axis, and high densities of the elastic and magnetic free
energies occur in a region of thickness . Since the field lines have to bend
around the sphere, the cross section of the region is of the order of a?, and its
volume is proportional to a?£ 7. The Frank free energy density is of the order
of K/ f%{, where K is a typical Frank constant, and therefore the elastic free
energy scales with Ka?/¢g. The same holds for the magnetic free energy. In
the case of the Saturn-ring configuration, high free energy densities occur in
a toroidal region of cross section o 5125{ around the disclination ring. Hence,
the volume scales with a{%{, and the total free energy is of the order of Ka,
i.e., a factor a/&y smaller than for the dipole.

Figure 8 presents a calculation for a particle size of a = 0.5 ym and the
liquid crystal compound 5CB. We plot the free energy in units of 7K3a
as a function of 8, for different magnetic field strengths which we indicate
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by the reduced inverse coherence length a/&y. Without a field (a/ép =
0), the dipole is the energetically preferred configuration. The Saturn ring
shows metastability. A thermally induced transition between both states
cannot happen because of the high potential barrier. At a field strength
a/ég = 0.33, the Saturn ring becomes the stable configuration. However,
there will be no transition until the dipole loses its metastability at a field
strength a/£y = 3.3, which is only indicated by an arrow in Fig. 8. Once
the system has changed to the Saturn ring, it will stay there even for zero
magnetic field. Hence, the dipole is transformed into a Saturn ring with
the help of a magnetic field. If the Saturn ring is unstable at zero field, a
hysteresis occurs. Starting from high magnetic fields, the Saturn ring loses
its metastability at a certain field strength, and a transition back to the
dipole takes place. In Fig. 7, it was shown that the second situation is
realized for particles larger than 720 nm. Calculations were also performed
for a particle size of 1uym and the liquid crystal compound 5CB. It was
found that the Saturn ring is still metastable at zero field in contrast to the
result of the one-constant approximation.

2.2.4. Influence of Finite Surface Anchoring

In the last subsection we investigate the effect of finite anchoring on the
director field around the spherical particle. The saddle-splay term with its
elastic constant Koy is important now. In Fig. 9 the free energy is plotted
versus the reduced surface extrapolation length £g/a for different reduced
saddle-splay constants Ky4/K3. Zero magnetic field and the one-constant
approximation are chosen. The straight lines belong to the dipole. Then, for
decreasing surface anchoring, there is a first-order transition to the surface-
ring structure. We never find the Saturn ring to be the stable configuration
although it enjoys some metastability. For Ky4/K3 = 0, the transition
takes place at £s/a ~ 0.085. This value is somewhat smaller than the
result obtained by Ruhwandl and Terentjev [54]. One could wonder why
the surface ring already occurs at such a strong anchoring like £s/a =
0.085 where any deviation from the homeotropic anchoring costs a lot of
energy. However, if Af is the angular width of the surface ring where the
director deviates from the homeotropic alignment, then a simple energetical
estimate allows A to be of the order of £g/a.

It is interesting to see that the transition point shifts to higher anchoring
strengths, i.e, decreasing £s/a when Ky4/K3 is increased. Obviously, the
saddle-splay term favors the surface-ring configuration. This fact can be
understood immediately since the surface ring at the equator of the sphere
introduces a “saddle” in the director field. Such a structure is known to
be favored by the saddle-splay term. The conclusion can be checked by the
numerical calculation and an analytical modelling of the surface ring [27].
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Figure 9. The minimum free energy F' in units of 7K3a as a function of the reduced
surface extrapolation length £s/a for different Kos/K3. A first-order phase transition
from the dipole to the surface ring occurs. Further parameters are indicated in the inset.

2.3. TWO-PARTICLE INTERACTIONS IN A NEMATIC SOLVENT

Two particles in a nematic solvent interact since the director field between
particles is distorted. To calculate the two-particle interaction exactly, one
has to determine the director field around two spheres by minimizing the
Frank free energy. An analytical approch would require appropriate ansatz
functions which are not known so far. A pure numerical approach becomes
difficult when the particles are far away from each other since the integra-
tion volume becomes very large. Here we are especially interested in the
long-range character of the interaction, and a phenomenological approach
is chosen to determine it.

It is instructive to first consider the director field far away from the
particle, which crucially depends on the global symmetry of the system
[55, 26]. Let the director ng at infinity point along the z axis. Then, in the
far field, the director is approximated by n(r) = (ng, ny, 1) with ng,ny < 1.
In leading order, the normalization of the director can be neglected, and
the Euler-Lagrange equations for n, and n, arising from a minimization
of the Frank free energy in the one-constant approximation are simply
Laplace equations, VQn“ = (0 . The solutions are the well-known multipole
expansions of electrostatics that include monopole, dipole, and quadrupole
terms. They are all present if the suspended particle has a general shape or
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if, e.g., the dipole in Fig. 3 is tilted against ng. In the dipole configuration
with its axial symmetry about ng, the monopole is forbidden, and one
obtains

z

x 2T y Y
nwsz—Fch—E’ and ny:p——l-2cr5 , (18)

T3
where r = (22 + y? 4 22)'/2. The expansion coefficients p and c are deter-

mined by minimizing the Frank free energy. They are used to assign both
a dipole (p) and quadrupole (¢) moment to the configuration:

p =pny and c¢=c(np®mny—1/3) . (19)

The symbol ® means tensor product, and 1 is the unit tensor of second
rank. We adopt the convention that the dipole moment p points from the
companion defect to the particle. Hence, if p > 0, the far field of Egs. (18)
belongs to a dipole configuration with the defect sitting below the particle
(see Fig. 3). Saturn-ring and surface-ring configurations possess a mirror
plane perpendicular to the rotational axis. Therefore, the dipole term in
Egs. (18) is forbidden, i.e., p = 0.

In the following we concentrate on the dipole configuration. A thor-
ough discussion of the two-particle interactions is presented in Ref. [26].
We introduce a dipole-moment density of particle-defect dipoles situated
at re,

P(r) = Z p¥i(r —r%) with  p%* =pe® . (20)

The unit vector e® specifies the direction of the dipole moment associated
with droplet «. It can differ from the director ny far away from the par-
ticle which means that the particle-defect dipole is tilted against ng. In
constructing P(r), the particles are regarded as point objects. Hence the
theory formulated in the following is only valid at length scales large com-
pared to the particle radius. Now, a free energy is constructed from all
rotationally invariant combinations of P, n, and the gradient operator V
that are also even under n — —n. The result is

F = g /d37” (Vinj)Q — A;[pa : n(ra)]2

—|—47rK/d37‘[—P n(V-n)+4P-(nx V xn)] . (21)

The first term on the right-hand side is the conventional Frank elastic
free energy in the one-constant approximation. The second term demands
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that the particle-defect dipole prefers to be parallel to the local director
n(r®). According to the restriction of the theory to length scales large
compared to the particle radius, this is the director ny far away from the
particle. The third and fourth term are identical to the treatment of the
flexoelectric effect in a nematic [56, 37]. The —P -n(V -n) term in Eq. (21)
shows that dipoles aligned along n create local splay as is evident from the
dipole configuration depicted in Fig. 3. In addition, this term predicts that
dipoles can lower their energy by migrating to regions of maximum splay
while remaining aligned with the local director. Experiments on multiple
nematic emulsions [20, 21] support this conclusion. Indeed, the coupling
of the dipole moment to a strong splay distortion explains the chaining of
water droplets in a large nematic drop whose observation was reported
in the introduction. This subject will be addressed further in the next
subsection. The dipole-bend coupling term in Eq. (21) does not contribute
in the following treatment.

We now assume that the far-field director ng and all the dipole moments
of the particles point along the z axis, i.e., P(r) = P(r)ng. Furthermore, we
are interested in small deviations from ng, n = (ng,ny,1), and formulate
the effective energy of Eq. (21) up to harmonic order in n:

F = K/d3r [L(Vn,)? —4nPo,n,] . (22)

The Euler-Lagrange equations for the director components are
V?n, = 4n8,P(r) , (23)

which possess the solution

ny(r) = — / & Lo Py . (24)

| — x|

For a single droplet at the origin, P(r) = pd(r), and the equation yields
exactly the dipole part of the far field in Eq. (18). This demonstrates the
validity of the phenomenological approach.

Inserting the solution (24) into Eq. (22), expresses the free energy as
pairwise interactions of the dipole densities,

F o 1 3 3 1 - !
K=o /d rd’r’ P(r)Vpp(r — ' )P(r') , (25)
with
11 s
Vpp(r) = 0,0~ = = (1—3cos®0) , (26)

T T



20

Figure 10. Scenario to explain the chaining of water droplets in a large nematic drop.
The second water droplet and its companion hyperbolic hedgehog form a dipole so that
the total charge of the nematic drop is not changed. The dipole is attracted by the
strong splay deformation around the droplet in the center (left picture). The dipole
moves towards the center until at short distances the repulsion mediated by the point
defect sets in (middle picture). A third droplet moves to the region of maximum splay to
form a linear chain with the two other droplets.

where 6 is the angle enclosed by the separation vector r and ngy. Thus, the
interaction energy between particles at positions r and r’ with respective
dipole moments p and p' is

UR)=4rK pp'Vpp(R) , (27)

where R = r —r'. The potential U(R) is identical to the analogous problem
in electrostatics. Minimizing it over the angle 6, one finds that the dipoles
prefer to form chains along their axes, i.e., pp’ > 0, § = 0, 7. The chaining
was observed by Poulin et al. in inverted emulsions [49, 21] or in a sus-
pension of micron-size latex particles in a lyotropic discotic nematic [50].
Poulin et al. also confirmed the functional form of the dipolar force (see
Ref. [49]).

In the Saturn-ring and surface-ring configuration, the dipole moment is
zero. A phenomenological theory including quadrupole moments predicts
that they interact like electric quadrupoles [57, 26].

2.4. NEMATIC COLLOIDAL DISPERSIONS IN COMPLEX GEOMETRIES

2.4.1. Motivation

In Subsection 2.2 the dipole configuration was introduced under the bound-
ary condition of a uniform director field at infinity. In Subsection 2.3 this
constraint was released by demanding that the director field far away from
the particle is sufficiently smooth. This enables the definition of a local
director along which the dipole aligns. In the following, it is demonstrated
that the particle-defect dipole also exists in more complex geomtries, e.g.,
nematic drops. First, we will consider the chaining of water droplets in a
large nematic drop which was already introduced in the introduction and
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Figure 11. a) Geometry parameters for two water droplets with radii r1 =72 =1in a
large nematic drop with radius r3 = 7. The system is axially symmetric about the z axis.
The coordinates z1, z2, and zq are the respective positions of the two droplets and the
hyperbolic hedgehog. The two distances of the hedgehog from the surfaces of the droplets
are d; and d».

Fig. 1. The existence of the dipole offers an explanation for the chaining
since it is attracted by strong splay deformations, as predicted by the phe-
nomenological theory of the last subsection. Figure 10 illustrates in detail
why the chaining occurs. Secondly, we also identify the dipole in a bipo-
lar configuration which occurs for planar boundary conditions at the outer
surface of the nematic drop. Two boojums, i.e., surface defects appear
[58, 59, 60], and the dipole is attracted by the strong splay deformation in
the vicinity of one of them [20, 21, 26].

2.4.2. Geometry, Parameters, and Numerical Details

Two particular geometries of axial symmetry are investigated numerically.
The first problem is defined in Fig. 11: two spherical water droplets with
radii 71 = ro = 1 are situated in a large nematic drop with radius r3 = 7.
The whole system possesses axial symmetry so that the water droplets and
the hyperbolic hedgehog, indicated by a cross, are located always on the z
axis. The coordinates z1, zo, and z4 denote, respectively, the positions of the
centers of the droplets and of the hyperbolic hedgehog on the z axis. The
distances of the hedgehog from the surfaces of the two water droplets are,
respectively, d; and do. Then, the quantity di +ds means the distance of the
two small spheres, and the point defect is situated in the middle between
them if d; = do. At all the boundaries, rigid homeotropic anchoring of the
director is assumed. Hence, any surface terms in the free energy can be
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Figure 12. The free energy F' as a function of the distance d; + d2 between the small
spheres which are placed symmetrically about z = 0. Curve 1: z4 = 0, curve 2: position
zq of the defect can relax along the z axis.

omitted.

In the second problem, only one water droplet inside a large nematic
drop is considered. The anchoring of the director at the outer surface of
the large nematic sphere is rigid planar. At the surface of the small sphere,
homeotropic boundary conditions are chosen again. The same coordinates
and lengths are used as described in Fig. 11 but the second droplet is
omitted.

In the following, the Frank free energy is expressed in units of Kja,
where a is the radius of the chaining water droplets. The starting con-
figuration for the Newton-Gauss-Seidel method already possesses the hy-
perbolic point defect at a fixed position z4. Its location does not change
during the relaxation. Integrating the free energy density over one triangle
of the triangulated integration area (see Fig. 2) yields a line energy. A value
F, = (K1 + K3)/2 for its upper limit is introduced. Whenever the numeri-
cally calculated local line energy is larger than Fj, it is replaced by Fj. This
stabilizes the hyperbolic point defect against opening up to a disclination
ring whose radius would be unphysically large. The calculations are pre-
formed for the nematic compound 5CB with the respective bend and splay
elastic constants K33 = 0.53 - 107! N and K;; = 0.42- 10~ ' N.

2.4.3. Identification of the Dipole
In Fig. 12 the free energy F is plotted as a function of the distance d; + ds
between the surfaces of the small spheres. They are placed symmetrically
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Figure 13. The free energy F as a function of A = (d2 — d1)/(d1 + d2). Sphere 2 is
placed at zo = 0. The position z; of sphere 1 is the parameter. Curve 1: z; = 5, curve 2:
z1 =4, curve 3: z; = 3.5, and curve 4: z; = 3.

about the center, i.e., 29 = —z;. Curve 1 shows a clear minimum at dy+ds ~
0.7, the defect stays in the middle between the two spheres at z; = 0. In
curve 2 the defect is moved along the z axis, and the minimum of the free
energy is plotted for each fixed distance d; + ds. It is obvious that beyond
di + da = 2 the defect moves to one of the small spheres so that the dipole
forms.

To investigate this phenomenon further, sphere 2 is placed in the center
of the nematic drop at zo = 0. Then, the energetically preferred position
of the point defect is determined for different locations z; of sphere 1.
The position of the hedgehog is indicated by the order parameter A =
(d2 — d1)/(d1 + da). If the defect is located in the middle between the two
spheres, A is zero since d; = do. On the other hand, if the defect sits at the
surface of sphere 1, d; = 0, and A becomes one. In Fig. 13 the free energy
F versus A is plotted. In curve 1, where the small spheres are farthest apart
from each other (z; = 5), the defect is clearly close to sphere 1. This verifies
that the dipole is existing. It is stable against fluctuations since a rough
estimate of the thermally induced mean displacement of the defect yields
0.01. When sphere 1 is approaching the center (curve 2: z; = 4 and curve
3: z1 = 3.5), the defect moves away from the droplet until it nearly reaches
the middle between both spheres (curve 4: z; = 3). This means that the
dipole vanishes gradually until the hyperbolic hedgehog is shared by both
water droplets.

An interesting situation occurs when sphere 1 and 2 are placed sym-
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Figure 14. Planar boundary conditions at the outer surface of the large sphere create
boojums, i.e., surface defects at the north and the south pole. A water droplet with
homeotropic boundary conditions nucleates a hyperbolic hedgehog. Two configurations
exist that are either stable or metastable depending on the position of the water droplet;
(1) the dipole, (2) the hyperbolic hedgehog sitting at the surface.

metrically about z = 0 as it was already studied in Fig. 12. Then, the
defect has two equivalent positions on the positive and negative part of the
z axis. Now, the situation is reminiscent to a symmetry-breaking second-
order phase transition [25, 61]. It occurs when, in the course of moving the
water droplets apart, the defect starts to approach one of the droplets, and
the dipole forms. Take the order parameter A, where A = 0 and A # 0
describe, respectively, the high- and the low-symmetry phase. A Landau
expansion of the free energy yields

F(A) = Fy(z1) + ap[2.3 — 21]A% + ¢(z1) A, (28)

where z1 = —2zy plays the role of temperature, and the transition point
z1 = 2.3 was determined by a numerical treatment [28]. Odd powers in A
are not allowed because of the required symmetry, F(A) = F(—A). This
free energy qualitatively describes the situation which should be observable
in an experiment.

2.4.4. The Dipole in a Bipolar Configuration

In multiple nematic emulsions it is possible to change the anchoring of the
director at the outer surface of the large nematic drop from homeotropic
to planar [20]. Then the bipolar configuration for the director field appears
[59, 60], where two boojums [58], i.e., surface defects of charge 1 are situated
at the north and south pole of the large nematic drop (see configuration (1)
in Fig. 14). The topological point charge of the interior of the nematic drop
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Figure 15. The free energy F as a function of the position z; of the water droplet for
the configurations (1) and (2). For z; > —3.5, (1) is stable, and (2) is metastable. The
situation is reversed for —4.3 < z1 < —3.5. Configuration (1) looses its metastability at
Z1 = —4.3.

is zero, and every small water droplet with homeotropic boundary condition
has to be accompanied by a hyperbolic hedgehog. In the experiment the
hedgehog sits close to the water droplet, i.e., the dipole exists and it is
attracted by the strong splay deformation close to the south pole [20], as
predicted by the phenomenological theory of Subsection 2.3 (see also Refs.
[20, 26)).

A numerical analysis of the free energy F' is in agreement with exper-
imental observations but also reveals some interesting details which have
to be confirmed. In Fig. 15 the free energy F is plotted as a function of
the position z; of the small water droplet. The diagram consists of curves
(1) and (2), which correspond, respectively, to configurations (1) and (2)
in Fig. 14. The free energy possesses a minimum at around z; = —5.7. The
director field assumes configuration (2), where the hyperbolic hedgehog is
situated at the surface of the nematic drop. Moving the water droplet closer
to the surface, induces a repulsion due to the strong director deformations
around the point defect. When the water droplet is placed far away from the
south pole, i.e., at large z1, the dipole of configuration (1) forms and rep-
resents the absolute stable director field. At z; = —3.5 the dipole becomes
metastable but the system does not assume configuration (2) since the en-
ergy barrier the system has to overcome by thermal activation is much too
high. By numerically calculating the free energy for different positions of
the hedgehog, we have, e.g., at z1 = —4.0, determined an energy barrier of
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Ksa =~ 1000 kgT', where kg is the Boltzmann constant, T the room temper-
ature, and a = 1 pm. At z; = —4.3, the dipole even loses its metastability,
the hyperbolic defect jumps to the surface at the south pole, and the water
droplet follows until it reaches its energetically preferred position. On the
other hand, if it were possible to move the water droplet away from the
south pole, the hyperbolic hedgehog would stay at the surface since con-
figuration (2) is always metastable for z; > —3.5. The energy barrier for a
transition to the dipole is again at least 1000 kg7 and cannot be overcome.

3. Colloidal Dispersions above the Nematic-Isotropic Phase Tran-
sition

Above Ty the liquid crystal mediated interaction is short range and has
a completely different spatial and temperature dependence as the one in
the nematic phase. The difference between the two interactions was nicely
demonstrated in an experiment performed by Poulin et al.[20] where it was
shown that spherical water droplets immersed in a nematic liquid crystal
form a long living chain of droplets. However, as the temperature was raised
above Ty the structure became unstable, water droplets have collapsed
and formed one large droplet. The aim of this section is to explain this
experiment and to predict the behavior of liquid crystal colloidal dispersions
for T > Tny.

In the isotropic phase there is no dominating long range liquid crys-
tal mediated interaction. Therefore one has to know the details of all the
relevant interactions in the system in order to determine the conditions
required for the stability of isotropic liquid crystal colloidal dispersions.
Besides the conventional van der Waals, screened Coulomb, and steric in-
teractions [1], liquid crystal mediated mean-field and fluctuation-induced
Casimir forces [3, 2] as well as depletion forces in case of mixtures of small
and large particles [1, 10] may play an important role. In this study in
addition to “conventional” liquid interactions only the mean-field part of
liquid crystal interactions will be treated. Since only very dilute systems
are being examined, the description will be limited to pair interactions.

3.1. STABILITY CRITERIA FOR COLLOIDAL DISPERSIONS

Colloidal dispersions of particles interacting with short range potential can
undergo a transition from a dispersed to an aggregated state. Therefore an-
swering the question about the stability of colloidal dispersions is the most
important task of colloidal physics [1]. The aggregation of particles is initi-
ated by an attractive two-particle potential. If the attraction is large com-
pared with the thermal energy k7', a relatively long-living non-equilibrium
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phase' occurs. On the other hand, attractions that are small compared with
kT lead to an equilibrium phase separation in which the particles coexist
in two different phases, in a dispersed and in an aggregated state. This pro-
cess of aggregation, in either limit of the interaction strength, is referred to
as flocculation [1].

Single particles in a colloidal dispersion perform Brownian motion. Due
to their attractive potential once they approach each other they form aggre-
gates. In a non-equilibrium phase, they cannot leave the state of aggregation
in the period examined while in the case of phase equilibrium, the parti-
cles coexist with equal chemical potential in the dispersed as well as in the
aggregated state. The higher interaction energy of the dispersed particles
is compensated by their larger contribution to entropy.

In the stability study, the term “flocculation transition temperature”
Trp defines the temperature at which the system switches from a floccu-
lated (below Trp) to a dispersed state (above Trp)2. In order to be more
precise, Trp is chosen as the temperature below which aggregates of par-
ticles are stable. Above Trp aggregates can be, depending on the presence
of a repulsive barrier, metastable or unstable. It must be stressed that the
“flocculation transition” is not an ordinary phase transition.

In what follows, stability study of liquid crystal suspensions, i.e. dis-
persions of noncharged and charged spherical particles in isotropic liquid
crystals, will be discussed. The density of surface charges although they
are screened by the dissolved counter ions, is in addition to temperature
an important control parameter of the system. Therefore, the “flocculation
phase diagram” can be predicted. It should be stressed that this is also not
an ordinary phase diagram.

In a phase diagram, where also charge density in the dispersion is in-
cluded as a control parameter, the term “flocculation end line” can be
introduced. Beyond this line, the dispersed states are absolutely stable for
all temperatures above the nematic-isotropic phase transition, T;. The
line will be determined by the two relevant parameters of the electrostatic
repulsion, i.e. the surface charge density of particles and the concentration
of ions in the solvent.

The next section is dedicated to noncharged liquid crystal colloidal dis-
persions while in the rest of the chapter spherical particles carry non zero

'Here, long-living means long compared with the observation time, i.e. hours or
days. Non-equilibrium, on the other hand, refers to a phase in which the particles are
aggregated.

2The rate of flocculation and herewith a transition from the long-living equilibrium
to the non-equilibrium phase is usually controlled by the concentration of ions in the
solution.
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but equal surface charge.

3.2. NONCHARGED LIQUID CRYSTAL COLLOIDAL DISPERSIONS AT
TEMPERATURES ABOVE T

In noncharged dispersions of classical liquids the van der Waals interaction
represents the most important contribution to the interaction. However, if
the classical liquid is replaced by a liquid crystal, one has to consider the
liquid crystal mediated interaction as well. As shown below, close to Tiny
the liquid crystal mediated interaction even dominates the van der Waals
interaction.

3.2.1. Van der Waals interaction

The expression for the effective van der Waals interaction is based on the
Hamaker approach, adapted to include the retardation effects 3. For two
macroscopic spherical particles of equal radii R this interaction yields [1]:

A(d 2R? 2R? d(d+ 4R
Intyw = — (d) [d( ( )

1 . 29
6 |dd+4R) @t 2RE T “(d12R) (29)
Here d is the closest distance between the surfaces of the two particles, and
A(d) is a generalization of the Hamaker constant which, due to retardation
effects, depends on particle separation. For equal particles made of material
1 embedded in a medium 2, A(d) is given by

_ 3 €1 — €9 2
Ad) = 4kBT<61+62> (30)
—2/3
3hve (n? —n3)? < TVena , o 211 2)3/2
+ 1+ (d +nj) :
16v/3 (12 1 )32 avae M)

[1, 81], where €; and ey are the zero-frequency dielectric constants of the
two materials, and n1 and n9 are the corresponding refractive indices at v,.
The frequency v, refers to the dominant ultraviolet absorption in the di-
electric spectrum of the embedding medium 2. It depends on the electronic
transitions in the atoms and is typically around 3 x 10'® s~1.

Expression (29) can be used to describe the van der Waals interaction
of rigid spherical particles composed of different types of materials like
polystyrene, metal, saphire and silica, that are immersed in a liquid mate-
rial. It can also be used to describe the van der Waals interaction of liquid
droplets that are dispersed in a liquid solvent.

3A detailed explanation of this approach can be found in [79, 81]
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Figure 16. Van der Waals pair interaction as a function of distance between particles
for silica particles and water droplets immersed into a liquid crystal. The diameter of
particles is 500 nm. In the case of silica particles e; = 3.8 and n; = 1.45, while for water
droplets €; = 81 and n; = 1.33. In both cases ez = 11, ny = 1.57, and ve = 3 x 1015571

To specify the Hamaker constant, which determines the strength of the
van der Waals interaction, the following dielectric constants and refractive
indices corresponding to silica particles immersed in a typical nematic liquid
crystal will be taken into account [43, 81, 85]: ¢ = 3.8, ny = 1.45, e5 = 11,
ne = 1.57, and v, = 3 x 105571, As a result, the Hamaker “constant”
equals A(d) = ( 0.18 4 0.87 [1 + (%:12¢)3/2)=2/3 ) kpT.

If instead of silica particles water droplets were dispersed in the liquid
crystal, €; and n; would be replaced by 81 and 1.33 respectively, and ac-
cordingly the Hamaker “constant” would be larger
A(d) = (0.43 + 3.64 [1 + (%114)3/2]=2/3 ) kpr,

In figure 16 we show the spatial dependence of the van der Waals pair
interaction of silica particles as well as water droplets immersed into a
liquid crystal. As one can see, the van der Waals interaction exhibits an
attraction which is the largest for small d and decreases to zero as the
distance is increased. Note, that in the case of silica particles the van der
Waals interaction is of the order of 1 kg7 or less if the distance between
the particles is larger than the nematic correlation length (= 10 nm). The
van der Waals interaction of water droplets, on the other hand, becomes
smaller than 1 kg7 if the distance between the particles is increased to 2-3

correlation lengths.

3.2.2. Calculation of free energy in partially ordered nematic liquid
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crystals

The ordering of a confined liquid crystal can be strongly influenced by the
liquid crystal-solid or liquid crystal-liquid interfaces. A properly treated
surface can induce a localized nematic order in the surface layer even at
temperatures that are a few Kelvin above the nematic-isotropic phase tran-
sition temperature Tnt of a bulk liquid crystal. The type of surface treat-
ment also controls the preferred direction of the molecules in the surface
layer. If this direction is perpendicular to the surface then we are dealing
with homeotropic anchoring. This will be the type of anchoring discussed
in this chapter.

In contrast to the nematic phase where the Oseen-Zocher-Frank free
energy (see Egs. (2) and (3)) is sufficient to describe most of the situations
below Tn;, the phenomenological Landau-de Gennes theory is needed to
determine the liquid crystal mediated interaction above 1. Following this
theory the bulk free energy density is expressed as a power expansion in
the order parameter [62]

1 1 1 1
Joutk = 5a(T = T*) rQ” + 2b6rQ° + 2c(rQ?)” + JL1VQ: VQ,
(31)

where a, b, ¢ and T* are temperature independent constants and 7 is the
temperature. For a typical liquid crystal they can be taken as: a = 0.18 X
10° J/m? K, b =-2.3 x 10% J/m3, ¢ = 5.02 x 108 J/m3, T* = 313.5 K. Ex-
pression (31) is called the one constant approzimation [62, 63] corresponding
to Ly = Ly = Ly = Ly = Lg = 0 [64].

In expression (31), only the free energy density which is not related to
the properties of the surface has been discussed. To describe the influence
of the surface an additional surface coupling term

.fs = GtI‘ (Q_QS)Q' (32)

has to be added to expression (31). This generalization of the Rapini-
Papoular surface free energy (8), which was first proposed by Nobili et
al. [65] tends to equalize the surface value of the order parameter Q with
the preferred value given by Qg. The constant G determines the strength
of the surface coupling.

“To be certain that setting L» = 0 definitely does not affect the qualitative behavior
of the system, the influence of the L, term using the ansatz function of this section was
checked (see Eq. (35)). Is was found that the curves of the interaction energy versus
particle separation, presented below, were shifted to larger distances in accordance with
the changing correlation length. However, the main features of the interaction were not
affected.
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3.2.3. Order parameter Q profile

When determining the spatial dependence of the order parameter Q our
discussion is limited to colloidal particles with surfaces which induce homeo-
tropic anchoring of molecules. Homeotropic anchoring is often achieved by
attaching surfactant molecules to the surface. In the vicinity of the sur-
face, the orientational freedom and mobility of liquid crystal molecules is
reduced [66, 67, 68]. This orientational and positional anchoring of the
molecules promotes a pretransitional formation of homeotropic nematic
ordering in the isotropic phase of nematogenic liquid crystals. In addi-
tion smectic partial layering can be induced as well [69, 70]. This effect
is strongly pronounced in liquid crystals such as 8CB and 12CB. However,
in 5CB-like materials smectic layers are not found in the surface induced
nematic layer formed in the isotropic phase. For the sake of simplicity the
layering will be neglected in this study.

Several experiments show that also in films where no smectic layers are
formed at the surface, substantial surface induced nematic ordering can
appear [71, 72, 73]. To qualitatively predict the behavior of molecules at
the substrates, one should first in detail know the relevant molecular in-
teractions and then perform either a molecular dynamics study, a Monte
Carlo simulation or apply a density functional approach [74, 75, 76]. Usu-
ally only qualitative predictions are needed so that one is not interested
in details occurring in the surface layer. Studies of the surface induced or-
dering in confined liquid crystals [77, 78] indicate that a combination of
a phenomenological continuum Landau-de Gennes approach together with
the assumption that there is an extra surface layer of molecular thickness
with constant order yields a good description of observed surface induced
ordering of nematogenic liquid crystals. Properties of this molecular layer
are left for future discussion so that here the surface layer is simply consid-
ered as a part of the substrate.

It must be stressed that this analysis is performed within a mean-
field approximation neglecting order fluctuations. An estimate of the lig-
uid crystalline order fluctuations between two parallel plates immersed in
an isotropic liquid crystal performed by Ziherl et al. [7] shows that the
fluctuation-induced forces usually yield only a minor correction to the
mean-field values and will therefore be also left for future considerations.

Since micron-size particles play an important role in the physics of liquid
crystal colloidal dispersions, the attention is focused on spheres with half a
micron in diameter.

For convenience, the order parameter Q will be expressed in terms of
the scalar order parameter S and director field n [62]. The bulk free energy
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B

Figure 17. A model of two particles (A and B) by conical segments. As a result, the
space between the particles is divided into several regions: 1,2.....

density (31) then reduces to

3
2

9

1 1 1
Foutk = 50(T = T*)S* + gbS3 + ch‘* + SL1(V8)? + 513152 lgrad n|? .

(33)

As shown in [79] the non-harmonic terms $b5% and ;¢S* are unimpor-
tant in comparison to a(T — T*)S? if the temperature is a few K above
T'n1- Therefore in the approximation presented here, these third and fourth-
order terms will be dropped. But it will be kept in mind that at Ty, the
results only yield a qualitative description of the system, whereas a few K
above Tny also the magnitude of the results obtained will be correct.

Omitting the third and fourth-order terms in (33), and expressing the
surface term (32) in terms of S and n the following expression for the free
energy density consisting of bulk and surface terms is obtained [62]

3
2
+ [Gs (S —85)2+3GnSS, (1—(n-n,)%)]s(

1
f=50AT S? + SLi(VS)2+ ngSQ grad n|? + (34)

)

where the surface term tends to equalize the scalar order parameter S and
director n at the surface with their preferred values Ss; and ng. Constants
Gs and G, determine the strength of the surface coupling.

A minimization of the free energy of the system, which is obtained by
an integration of (34) over the volume occupied by the liquid crystal, yields

—

r_R5
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a system of partial differential equations. They can be solved nummericaly
to obtain S(r) and n(r) and to determine the interaction mediated by the
liquid crystal. However, if some restrictions and simplifications are made,
one can also obtain an analytical expression for the interaction. In the rest
of the section we will introduce the procedure which leads to the analytical
expression.

As a first simplification the curved surface of a spherical particle is
approximated by several conical areas whose cross-sections in any plane
containing the axis of symmetry are polygons of n equally long line segments
as shown in Fig. 17. The region between the surfaces of the particles is
devided into regions. For each region an ansatz function for the scalar order
parameter as well as for the director field are constructed.

The ansatz funcion for S is just an order parameter profile between two
large parallel plates which induce homeotropic anchoring

S—3, _ coshz/é“. _ , (35)
cosh d; /2€ + yg sinhd; /2¢

where vs = 3 L1/(2 Gg §), z is the symmetry axes of the system and d;
is the distance between two surface plates in the region. Both parameters
are illustrated in region 5 of Fig. 18 (a). This approximation for the scalar
order parameter can be very well justified by taking into account that S
increases approximatelly exponentially with increasing distance between
the plates. Therefore the interaction which originates in a partially ordered
liquid crystal is only noticeable if the distance between the surfaces is not
larger than approximatelly 50 nm. For a sphere with a diameter in the
micrometer range this condition is only fulfilled for first few regions, where
the conical surfaces are almost parallel to each other.

When choosing the ansatz for the director field, it is convenient to dis-
tinguish between two limiting cases. In the limit of a small distance between
the plates, i.e. d = &, S is noticeable everywhere in the region, and the di-
rector n is described by a tangent vector to a circle lying in the plane which
contains the axis of symmetry (see Fig. 18 (a)). In the limit of a large d
(d > &), the two spheres do not interact. S is negligible in the middle of
the zone, and the director field n contributes least to the free energy when
it points radially outward around each sphere. Close to the z = 0 plane, the
director fields of the two spheres are matched together by choosing n as the
tangent vector of a circle (see Fig. 18 (b)). The size of the circle is chosen
to be the same as the size of the core of a defect in the nematic phase, i.e.,
the nematic correlation length £. Increasing the distance d between the two
particles, the director field should change continuously from the ansatz n,
at a small d to the field ny, at a large d. Therefore for medium values of d,
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Figure 18. Tllustration of the ansatz functions for S and n. (a) In region 3 the limit of
small inter-particle distances is taken into account. In this limit the director 7 is modelled
as the tangent vector to a circle as illustrated for rigid surface anchoring. In region 5, the
average distance ds between the surface elements As and Bs is defined. (b) Illustration
of the ansatz for the director field at large inter-particle distances.

the director field n has been chosen as a weighted superposition of n, and
Noo.

As shown in [79] these functions represent a good approximation to the
exact values of S and n which can be obtained by the minimization of the
free energy of the system.

3.2.4. Two particle interaction mediated by a partially ordered nematic
liquid crystal

In order to obtain an effective interaction between the two particles medi-
ated by the surrounding liquid crystal, the free energy F'(d) as a function
of the inter-particle distance d must be calculated. In addition, F'(d — o0)
is required, where d — oo corresponds to inter-particle separations much
larger than the correlation length. The interaction can then be defined as
the difference between these two quantities, Int(d) = F(d) — F(c0).

For the presentation of results, parameters corresponding to a typical
nematic liquid crystal will be used, a = 0.18 x 106 J/m3K, b = —2.3 x 106
J/m?, ¢ = 5.02 x 106 J/m?, L1 = 9 x 10712 J/m, and T* = 313.5 K. The
nematic-isotropic transition of a bulk liquid crystal, T equals 7" 4+ 1.3 K,
while the corresponding correlation length & = /3Ly /[a(T — T*)] at Ty
is of the order of 10 nm. In the following, the results in terms of T' > T
will be discussed. The surface ordering parameter S, is set at 0.3, while Gg
and Gy, according to some recent data derived from experiments [77, 73],
are expected to vary between 1 x 10~* J/m? and 5 x 1073 J/m?, with the
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Figure 19. Attractive and repulsive contribution to the interaction in region 5 as well as
their sum as a function of the inter-particle distance. The surface coupling constants G's
and G, are 1 x 1073J/m? and 5 x 10™% J/m” respectively, while T = Tn;. A magnified
section of the figure is shown as inset.

ratio Gy, / Gg not being larger than 5. The diameter of the particles will
be set to 500 nm.

Repulsive and attractive interaction:

In the following, the interaction is divided into its attractive part resulting
from the scalar order parameter S and its repulsive part originating in
the elastic distortion of the director field. In Fig. 19 both contributions
are illustrated for region 5 introduced in Fig. 18 (a). As parameters, Gg =
1x1073 J/m?2, Gy, = 5x1073 J/m? and T = Ty are chosen. It is interesting
to note that for a small d, the absolute value of Int{ is larger than Int]
which results in an attractive interaction. With increasing distance the
attraction decreases and reaches its minimum at d = 53nm (see the inset
of Fig. 19), beyond which the interaction becomes repulsive. In the limit of
a large d, i.e. d > &n1 =~ 10 nm, the interaction decreases approximately
exponentially.

Interaction at various temperatures:

In Figs. 20a and b, the total inter-particle interaction is shown as a func-
tion of d for various temperatures above T** = Ty1 4+ 0.16 K. The surface
coupling parameters equal Gg = 1 x 1072 J/m? and G,, = 5 x 103 J/m2.
In Fig. 20a, the range of relatively strong attraction between the parti-
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Figure 20. Two-particle interaction Int as a function of distance d between the particles
at various temperatures. (a) In the range 10 nm < d < 30 nm a strong attraction occurs.
Inset: The absolute value of the interaction at d=10 nm is plotted in a logarithmic scale
versus VAT = /T —T*. (b) Int(d) in the range of the repulsion barrier, .e. 35 nm
< d < 100 nm. Inset: The height of the repulsion barrier is plotted in a logarithmic scale
versus AT = T — T*. Surface coupling constants Gs and G, are 1 x 1072 J/m? and
5 x 1072 J/m? respectively.
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cles is concentrated on, i.e. 10 nm < d < 30 nm, while Fig. 20b presents
larger distances, i.e. 35 nm < d <100 nm where the interaction exhibits a
repulsion barrier.

It must be stressed that the magnitude of the interaction strongly de-
creases with increasing temperature for all distances d. The inset of Fig. 20a,
where the absolute value of the interaction at d = 10 nm is plotted in a
logarithmic scale versus VAT = /T — T*, reveals that the interaction at

d = 10 nm is proportional to e"VAT/ATa  where AT, = 0.4 K is a fitting
parameter. An effective distance d, ~ 20 nm via AT, = 3L;/ad? is intro-
duced, so that the exponential decrease is described by e~ da/8(AT) where
E(AT) = \/3L1/aAT is the correlation length at AT. On the other hand,
for AT < 3.5 K the magnitude of the repulsion barrier is proportional to
e~AT/ATs  where ATg = 0.67 K is again a fitting parameter. This can be
seen in the inset of Fig. 20b, where the magnitude of the peak is plotted
in a logarithmic scale versus temperature. For larger AT, the temperature
dependence of the potential barrier height is more complicated. Because
of the liquid crystal mediated interaction’s relatively strong dependence on
temperature, when already only a couple of K above the bulk nematic-
isotropic phase transition, the attraction between the approximated parti-
cles decreases considerably, and the repulsive barrier becomes much smaller
than k}BT.

3.2.5. Ezplanation of available experimental data

The results of this interaction study can be directly applied in order to ex-
plain the experiment performed by Poulin et al. [20], which was briefly
described at the beginning of this section. Namely, they observed that
spherical liquid droplets dispersed in a nematic liquid crystal below T
form a linear chain which can persist for hours. However, when the tem-
perature was raised above Ty, the particles coagulated immediately. This
phenomenon can be easily understood if one can remember that the liquid
crystal mediated interaction is strongly attractive at small inter-particle
distances, and exhibits a repulsive barrier that is weak in comparison with
kgT as the particles are moved further apart. In addition, the van der Waals
interaction slightly increases the depth of the attractive part of interaction
and slightly reduces the potential barrier. Since the barrier is weak, the
strong attraction pulls the particles together.

In what follows it will be shown that a system of charged spherical par-
ticles immersed in an isotropic liquid crystal exhibits an additional number
of interesting phenomena. In such a system, in addition to the liquid crystal
mediated interaction and van der Waals attraction, electrostatic repulsion
must be taken into account as well.
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Figure 21. Charged spherical particles are immersed in a nematic liquid crystal at a
temperature above the nematic-isotropic phase transition. The surface of the particles
induces partial nematic ordering of the molecules, which attractively contributes to the
two-particle interaction. Surface charges screened by dissolved counter ions induce a
repulsive electrostatic interaction. The van der Waals interaction yields an attraction.

3.3. CHARGED SPHERICAL PARTICLES IMMERSED IN AN ISOTROPIC
LIQUID CRYSTAL

As shown in section 3.2, at temperatures above Ty, noncharged liquid crys-
tals mediate a relatively strong short-range interaction which overwhelms
the van der Waals attraction. In real cases colloidal dispersions include also
electric charges. Therefore to describe the relevant two-particle potential in
the isotropic phase, one must in addition to liquid crystal mediated and van
der Walls interactions also take into account electrostatic interactions. Such
a model system is schematically illustrated in Fig. 21. The most important
constituents of the system are spherical particles half a micron in diameter®,
which are dispersed in the isotropic phase of a nematic liquid crystal. They
carry a negative surface charge which, together with the positive free ions
diluted in the solvent, gives rise to a repulsive electrostatic interaction. The
surface of the particles is assumed to induce a perpendicular alignment of
liquid crystal molecules in the surface layer. The liquid crystal mediates an
interaction, which results from the distortion of the order parameter profile
in the space between the two interactiong particles.

In order to find the conditions required for the stability of the liquid
crystal suspension, one must be able to vary the parameters which substan-

This is the typical diameter of the water droplets used in the experiment [20] which
has induced this study.
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tially influence the interactions: the surface charge density of particles as
well as the concentration of ions in the solvent which, respectively, deter-
mine the strength and the range of the electrostatic repulsion. It is assumed
that the surface charge density and the concentration of ions can be varied
independently. The latter can, for example, be controlled by adding salt to
the solvent.

3.3.1. Electrostatic interaction
According to the model presented here, all rigid spherical particles dis-
persed in a liquid crystal carry the same amount of surface charge. In
addition, oppositely charged free ions are accumulated close to the surface.
Together with the surface charge, they form an electrostatic double layer
which screens the electric field produced by the surface charge. The 1/d de-
pendence of the Coulomb potential, with d being the distance between the
centers of two charged particles, is therefore replaced by a more complicated
expression.

Following the Derjaguin approximation, the electrostatic repulsion is
described by the following expression [1, 79]

2

_ qs _ _—kd
Intgs kT = wRegZanln(l ), (36)

where « is the Debye length

k1 = Ve kT /2e222n,, (37)

d is the inter-particle distance and gs is the surface charge density. As shown
in the study of Glendinning and Russel [82], the expression (36) is valid in
the limit of small inter-particle distances where kd ~ 1, and thin double
layers where kR > 30.

To quantify the electrostatic interaction the valence, concentration of
the ions dissolved in a liquid crystal, dielectric constant of the liquid crystal,
and surface charge density must be specified. We assume that the ions are
monovalent, i.e. z = 1 with a concentration, n, varying between 10~ and
10~% mol/l. Taking into account that the dielectric constant of the liquid
crystal equals €5 = 11, the corresponding Debye length at room temperature
varies between 3.5 nm and 10 nm. A typical value of the surface charge
density g, is of the order of 10* e,/um? [86]. Thus ¢, will be varied between
10 and 10* e,/pm?.

Note that the range of the surface charge densities and concentrations
of ions that are taken into account in this study is small in comparison with
the values that can be achieved in experiments with polar solvents. In or-
ganic solvents, however, it is generally difficult to dissolve ions. This creates
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Figure 22. Electrostatic (Intg), van der Waals (Intyw), the sum Intg + Intyw and
liquid crystal mediated (Intrc) and total (Int = Intrc+ Intvw + Intg) interactions are
plotted as a function of the inter-particle distance. The surface charge density and Debye
length are chosen to be 0.45 x 10%e,/pm? and 8.3 nm respectively while T = Tn;+0.1 K.
A magnified section of the figure is shown as inset.

problems in achieving Debye lengths of the order of 10 nm. Furthermore,
ionic groups attached to the surface of suspended particles do not dissoci-
ate into ions very easily, and as a result, reasonable surface charge densities
cannot be obtained. Liquid crystal compounds consist of organic molecules
which do, however, contain polar groups. Nevertheless, it seems that the
ionic concentrations and surface charge densities employed in this study
can hardly be realized. However in Ref. [87], complex salt is dissolved in
nematic liquid crystals, yielding ionic concentrations of up to 10~* mol/l.
Furthermore, when silica spheres are coated with silan, the ionic group
NH; OH~ occurs at the surface of the particles, with a density of 3 x 10°
molecules ym?. Tt also dissociates to a large amount in a liquid crystal [88].
In addition, the silan coating provides the required homeotropic boundary
conditions for the liquid crystal molecules. These two examples illustrate
that the parameters of the electrostatic inter-particle potential presented
here should be accessible in conventional thermotropic liquid crystals.

In the following electrostatic stabilization will be investigated. A brief
analysis will be made of the total two-particle interaction Int, which in-
cludes van der Waals (Intyw), electrostatic (Intg), and the liquid crystal
mediated (Intrc) interaction.
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Figure 23. Interaction Int as a function of the distance between the particles for various
temperatures. The surface charge density equals 0.5 x 10%e,/um? while k~! = 8.3nm. A
magnified section of the figure is shown as inset.

3.3.2. FElectrostatic stabilization of a dispersion

Taking Int,qw given by Eq.(29), Intg described by Eq.(36) and the Intrc
described in Section (3.2.4) one finds the total interaction. In Fig. 22 Intc,
Intg, Intyw, the sum Intg + Intyw, and the net interaction Int as a
function of the inter-particle distance are presented. The temperature is
Tnr1 + 0.1 K which is 0.06 K below T**, and the surface charge density and
Debye length are taken to be 0.45 x 10*e,/um? and 8.3 nm, respectively.
The electrostatic interaction exhibits a strong repulsion at small distances
(d) and decreases exponentially for a large d. On the other hand, the van
der Waals interaction yields an attraction of some kg7 at d = 5nm —
much weaker than the electrostatic interaction — and decreases at 1/d° for
a large d. A sum of these two contributions is strongly repulsive at a small
d, exhibits a shallow minimum of 1/3 kT at d ~ 70 nm, and approaches
zero for a large d. The liquid crystal mediated interaction Intyc is strongly
attractive for small particle separations and weakly repulsive at d =~ 50 nm.
It approaches zero for a large d. If this interaction is added to Intg+Intyw,
an interaction exhibiting a deep potential minimum and a weak repulsive
barrier is obtained. The minimum and the barrier appear at d =~ 10 nm
and d =~ 50 nm, respectively.

Flocculation transition:
In Fig. 23, the two-particle interaction Int = Intrc + Intyw + Inig is
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shown as a function of the particle separation for various values of temper-
ature. The interaction curve exhibits a minimum with a depth of 10 kgT
which is followed by a low potential barrier. The potential minimum en-
ables flocculation of particles, i.e., formation of particle aggregates. Since
the depth of the potential minimum as well as the height of the potential
barrier are not large enough to prevent an aggregate of two particles to
decay into a pair of single particles, the flocculation is a dynamical process.
Particles keep forming aggregates and aggregates constantly decay back
into a dispersion of single particles.

For T = Ty, the interaction curve exhibits a minimum with a depth
of the order of 20 kg7 at d =~ 10 nm. The minimum is followed by a
small potential barrier of =~ 1 kgT. As the temperature is raised, the depth
of the minimum decreases, and already at 0.3 K, which is approximately
2(T** —Tny) above Ty it becomes very shallow. At Ty +0.54 K the mini-
mum still exists, but corresponds to the metastable state. The temperature
at which the interaction at the minimum equals zero is called the tempera-
ture of the “flocculation transition”, Trp. Namely, above this temperature
the probability of finding two particles in an aggregated state becomes
smaller than the probability that they will be dispersed. In a certain tem-
perature interval above Trp, the aggregates of particles are either unstable
or metastable. When the temperature is raised even further, the interaction
minimum disappears completely and the aggregates become unstable. This
means that within a temperature range of a few tenth of a Kelvin, there is
a sudden change from a fully aggregated to a completely dispersed state,
reminiscent of the critical flocculation transition in polymer stabilized col-
loidal dispersions [1, 83]. We would like to stress that the flocculation of
particles is a dynamical process, since the repulsive potential barrier is not
high enough to prevent an aggregate of two particles to decay into two
independent particles.

Since electrostatic interaction depends on the square of the surface
charge density ¢, a strong electrostatic repulsion can easily be achieved. If
the surface charge is large enough, the interaction at the potential minimum
exceeds zero even at 1. This case is presented in Fig. 24, where a shallow
minimum at Tn; can be observed, which disappears as the temperature is
increased by 0.1 K =~ %(T** — Tn1). The surface charge density and Debye
length equal ¢; = 0.63 x 10%e,/um? and k~! =8.3 nm, respectively.

“Flocculation phase diagram”:

The temperature of “flocculation transition” depends strongly on the sur-
face charge density as well as on concentration of ions in the solution. To
describe this dependency, “flocculation phase diagrams” are presented in
Fig. 25. Here the temperature of “flocculation transition” is plotted as a
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Figure 24. Interaction Int as a function of the distance between the particles for various
temperatures. Surface charge density equals 0.63 x 10%e,/pum? while k=" = 8.3nm. A

magnified section of the figure is shown as inset.
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Figure 25. Temperatures of flocculation transition for various values of Debye length. A

flocculation phase diagram for x~*

= 8.3 nm is shown as inset. Temperatures above the

temperature of flocculation transition (the solid line) correspond to the dispersed state,
while for those temperatures below Trp, doublets are formed. Dashed lines represent the
temperatures at which the escape time is ten (dashdotted) or a hundred (dotted) times

larger than in the case of zero interaction.
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function of surface charge density for various values of Debye length. The
regions of the dispersed or the flocculated states of particles are also indi-
cated. The inset corresponds to the phase diagram for k' = 8.3 nm. The
solid line represents the temperatures of the “flocculation transition” Trp.
For temperatures above Trp, the particles remain dispersed, while for tem-
peratures below Trp the system is flocculated. To obtain a feeling for the
stability of the aggregated state at temperatures below TFp, lines have been
determined in the phase diagram, where the escape time derived from the
minimum of the inter-particle potential is, respectively, ten (dash-dotted)
or a hundred (dotted) times larger than in the case of zero interaction. Note
that these lines are in rather close proximity to the line representing the
flocculation transition. In the main plot of Fig. 25, the temperatures of the
flocculation transition are shown for different values of the Debye length. A
decrease of the surface charge density results in a higher transition temper-
ature. A larger concentration of dissolved ions, i.e. a smaller Debye length,
causes the same effect. The qualitative features of the transition lines can
be easily interpreted. A smaller surface charge decreases the strength of the
electrostatic repulsion, which is then compensated by a weaker attraction
within the liquid crystal mediated interaction. Therefore the flocculation
occurs at a higher temperature.

“Flocculation end line”:

As shown in Fig. 24, large surface charge densities can even prevent the
floccultion of particles at all temperatures above 1. The border line in
a g,k diagram beyond which the flocculated state is never absolutely
stable for all temperatures, can be defined as the “flocculation end line”.
It decreases very strongly with an increasing Debye length. In other words,
when the the Debye length is increased as a result of a smaller ionic con-
centration, the screening of the surface charge ¢, is reduced. Therefore, a
smaller value of ¢, is enough to prevent the particles from flocculating.

4. Conclusions

In this contribution we have studied liquid crystal dispersions below and
above the nematic-isotropic phase transition. Below T even one particle
suspended in a nematic solvent already offers a complicated system. With
the dipole, the Saturn ring and the surface ring, we have introduced the
three possible configurations, and we have discussed in detail under what
conditions they form. Starting from a phenomenological theory, it has been
demonstrated explicitly that particles surrounded by the dipolar configura-
tion interact like conventional dipoles. Apart from electro- or magnetorhe-
ological fluids, such a long range interaction is not present in conventional
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Figure 26. Flocculation end line, i.e. the smallest surface charge density at which
particles are still dispersed at T'vr, as a function of the Debye length.

colloidal dispersions. It is responsible for the observed chaining of the parti-
cles. We have also addressed dispersions of particles in complex geometries,
and we have studied in several situations how the dipolar configuration
forms. These observations together with the finding that a magnetic or
electric field can induce a transition from the dipole to the Saturn ring
configuration still awaits an experimental investigation.

At temperatures above Ty, the suspended particles are wetted by a
surface-induced nematic film whose thickness is of the order of the nematic
correlation length. The particles experience a strong liquid crystal medi-
ated attraction when their nematic layers start to overlap since then the
effective volume of liquid crystalline ordering and therefore the free en-
ergy is reduced. The attraction is short ranged and the system behaves
like a conventional colloidal dispersion. Since the thickness of the nematic
film increases when approaching Ty, the liquid crystal mediated attrac-
tion can induce a sudden flocculation transition in an, e.g., electrostatically
stabilized dispersion. This phenomena, is reminiscent to polymer stabilized
colloids. If we use a polymer coating to stabilize the dispersion, we find
that the aggregation of particles due to the liquid crystal mediated inter-
action sets in gradually when cooling the dispersion down towards 7T, (see
Ref. [30]). So far, the flocculation transition has not been studied in detail
experimentally.
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Liquid crystal colloidal dispersions are still a fascinating subject of ongo-
ing research. Recent work addresses the Stokes drag of particles in a nematic
solvent [89, 32, 90]. Due to the coupling of the director and the velocity field
in the Ericksen-Leslie equations, the possibility of a highly non-linear Stokes
drag arises [90]. Perfectly ordered chains of oil droplets in a nematic were
produced from phase separation by Loudet, Barois, and Poulin [91] offering
the possibility of structure formation. Meeker et al. reported a gel-like net-
work in nematic colloidal dispersions with a significant shear modulus [92].
A detailed experimental and theoretical study is presented in Refs. [93, 94].
In cholesteric liquid crystals particle-stabilized defect gels were found [95],
and people start to investigate dispersions of particles in a smectic phase
[96, 97]. Finally, we note that the dipolar configuration also appears in two-
dimensional systems including (1) free standing smectic films [98], where
a circular region with an extra layer plays the role of the spherical parti-
cle, and (2) Langmuir films [99], in which a liquid-expanded inclusion in
a tilted liquid-condensed region acts similarly. Theoretical studies in two
dimensions were presented by Pettey, Lubensky, and Link [98].
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