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The equilibrium state of 2D foams
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PACS. 82.70.Rr – Aerosols and foams.

PACS. 64.60.Cn – Order-disorder transformations; statistical mechanics of model systems.

PACS. 05.90.+m – Other topics in statistical physics, thermodynamics, and nonlinear dynam-
ical systems.

Abstract. – The dynamics of two-dimensional cellular networks (foams) is written in terms
of coupled rate equations, which describe how the population of s-sided cells is affected by
cell disappearance or coalescence and division. In these equations, the effect of the rest of the
foam in statistical equilibrium on the disappearing or dividing cell is treated as a local mean
field. The rate equations are asymptotically integrable; the equilibrium distribution Ps of cells
is essentially unique, driven and controlled by the topological transformations for cells with
s < 6 +

√
µ2. Asymptotic integrability of the equations, and unique distribution, are absent

in a global mean-field treatment. Thus, short-ranged topological information is necessary to
explain the evolution and stability of foams.

Introduction. – Two-dimensional random cellular networks (“2D foams”) are widespread
in nature (soap froths, fragmentation patterns, biological epidermis, etc.) [1]. They are random
partitions of the plane by cells, which are topological polygons [1–3]. Disorder or absence of
specific adjustment imposes minimal incidence numbers (3 edges incident on a vertex). Foams
evolve into a stationary state of statistical equilibrium, with an invariant distribution of cell
shapes Ps, where s, the number of sides of a cell, is the only topological random variable [1,4].
Statistical equilibrium is established through local, elementary topological transformations
(ETT), which can be an edge flip (T1 transformation) or the disappearance of a 3-sided cell
(T2 transformation). In biological tissues, combinations of these transformations constitute
cell division (m, for mitosis) or its inverse, cell disappearance (d) (coalescence of two cells by
removal of their interface). It turns out that the asymptotic behaviour of the distribution Ps

is “universal”. We show here that this universality is due to asymptotic integrability of the
equations describing the variations of the cell population Ps under ETT.

Rate equations in the local mean field approximation. – The stationary distribution Ps

for a foam is the solution of coupled rate equations, which account for the local, but correlated
c© EDP Sciences
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Fig. 1 – Topological transformations: division (m) and disappearance (d) of a 5-sided cell. The
numbers 0, ±1 are the numbers of sides gained by the neighbouring cells in the process.

variations in the population of cells under ETT [5–7]:

∑
k

PkP (m|k)[ − δks + Γ(s|k;m) + (2/k)Ms−1(k)− (2/k)Ms(k)− Ps

]
+

+
∑

k

PkP (d|k)
[
− δks −Ms(k) +

k−4∑
i=−1

Ms−i(k)∆(i|k; d) + Ps

]
= 0. (1)

In (1), the first square bracket deals with cell division, the second with cell disappearance(1).
The rate equations depend on (see, e.g., fig. 1):

– P (m|k) (P (d|k)): the conditional probability that an existing k-cell divides (disappears),
weighted by the rate of division (disappearance).

– Γ(s|k;m): the conditional probability that a k-sided dividing cell has an s-sided daughter
(3 ≤ s ≤ k + 1).

– ∆(i|k; d): the conditional probability that a k-sided disappearing cell gives i sides to
one of its neighbours (−1 ≤ i ≤ k − 4).

– Ms(k) = As,kPs: the average number of s-cell neighbours of a k-cell.

A geometrical solution must satisfy the constraints

∑
Ps = 1 (normalization),∑

s

Ps = 6 (from Euler’s relation for a polygonal foam),

∑
s

Ms(k) =
∑

s

As,kPs = k (a k-sided cell has k neighbours). (2)

(1)The last term in each bracket, ±Ps, expresses the disappearance/production of one cell during the topo-
logical transformation (d)/(m).
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The constraints are identically satisfied by Ps if the parameters obey the sum rules [5, 7](2)
∑

s

Γ(s|k;m) = 2,
∑

s

sΓ(s|k;m) = k + 4,

k−4∑
i=−1

∆(i|k; d) = 1,

k−4∑
i=−1

i∆(i|k; d) = 1− (6/k),

∆(−1|k; d) = 1/3 + 4(k − 3)!/[k!]. (3)

The third constraint sets the local mean-field approximation: Maximum entropy infers
that, in statistical equilibrium, the correlator Ak,s is linear in k and s [8], Ak,s = (k −
6)σ(s− 6) + (s+ k− 6), where σ is a structural parameter [6,8]. The third constraint is then
redundant, automatically satisfied by the other two. It is through the s dependence of the
parameter Ms(k) that the local environment of the cell affected by ETT is represented.

The system of integro-difference equations (1) is greatly simplified if either the cell division
is the only topological process to take place (P (d|k) = 0), with Γ(s|k;m) independent of s for
3 ≤ s ≤ k + 1 [6](3), or if only three-, four- and five-sided cells can disappear (P (d|k) = 0 for
k ≥ 6) and there is no cell division (P (m|k) = 0). The rate equations (1) for Ps are then a
second-order linear difference equation:

a(s+ 1)Ps+1 + b(s)Ps + c(s− 1)Ps−1 = 0, (4)

for s ≥ 6 in the case of cell disappearance, and for all s ≥ 3 (Ps≤2 = 0) in the case of cell
division. The coefficients a(s), b(s) and c(s) of (4) depend on s, but they are all polynomials
of the same degree n, a(s) = Ans

n + An−1s
n−1 + · · · + A0, etc. This degree is 2 for the

division/fragmentation equations [6]. The degree of the polynomials a(s), b(s) and c(s) is 1 for
the cell death/coalescence equations (see eq. (8) below), in the local mean-field approximation.
Examples are given in [6], in table I, and below.

Asymptotic integrability of the rate equations. – The constraints (2) make eq. (4) asymp-
totically integrable (integrable for large s). Asymptotic integrability selects the physical so-
lution of the second-order difference equation and filters out the irrelevant one.

If a(s) + b(s) + c(s) = 0, eq. (4) reads D[a(s + 1)Ps+1 − c(s)Ps] = 0, where Df(s) =
f(s)− f(s− 1). The second-order equation (4) is integrable and becomes first-order:

a(s+ 1)Ps+1 − c(s)Ps = 0, (5)

(2)The relations for Γ express the fact that a k-sided cell divides into two daughter cells with s and k+4− s
sides. The relations for ∆ are obtained [7] by assuming that the k-sided cell disappears through successive
disappearance of its sides (fig. 1), starting with the smallest one. For k = 3, ∆(−1|3; d) = 1. This yields the
recursion relations in k and i:

k∆(−1|k; d) = (k − 3)∆(−1|k − 1; d) + 1, for k ≥ 4,

k∆(i|k; d) = (k − 3)∆(i|k − 1; d) + 2∆(i − 1|k − 1; d), for 0 ≤ i ≤ k − 4.

(3)Subtracting the equation for s from the equation for s + 1 eliminates the “integral”
∑

k PkΓ(s|k;m).
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Table I – Asymptotic integrability of the rate equations in the steady-state, and the distribution
Ps ∼ Cs−κzs, for various natural and simulated foams.

Local topological transfer Integrability n z κ

Division

S1 [6] q(s) = 0, integr. 2 1 1/A2

S2 [6] q(s) = s − 6, nq = 1 2 2/3 0

1 3

Disappearance

Local mean field q(s) = 1, nq = 0 1 C1/A1 1 − 1/(A1 − C1)+

+A0/A1 − C0/C1

1 1 + 1/(A1 − C1)

Topological gas [4, 6, 9] q(s) = 1, A0 = 0 = C0 1 C1/A1 1 − 1/(A1 − C1)

Aks = ks/6, σ = 1/6 1 1 + 1/(A1 − C1)

Random T1

Simulations [10] – – 3/4 ?

Simulations [3] – – 0.74 ?

with the constant = 0 on the right-hand side, because the solution Ps must satisfy the con-
straints (2). It has the unique solution

Ps =
[
c(s− 1)!/a(s)!]{[

a(i)!/c(i− 1)!]Pi

}
= P (1)

s , (6)

with a(s)! = a(s)a(s−1)a(s−2) · · · a(4)a(3), and a boundary value Pi (for i = 5, say). Asymp-
totically, P (1)

s ∼ Cs−κzs decays exponentially, with z = Cn/An and κ = n + (An−1/An −
Cn−1/Cn).

Equation (4) is asymptotically integrable (integrable at infinity) because

a(s) + b(s) + c(s) = q(s), (7)

where q(s) is a polynomial of lower degree nq < n. Equation (4) can then be written as
D[a(s+1)Ps+1 − c(s)Ps] + q(s)Ps = 0. Since nq < n, it reduces, for large s, to the first-order
equation (5).

The linear equation (4) has two independent solutions of the type Ps ∼ Cs−κzs [11]. The
first solution P

(1)
s is the same as that of the first-order equation (5). It decays exponentially,

with z = Cn/An < 1, and κ = n+ [Cn(An−1/An) + Bn−1 + An(Cn−1/Cn)]/(Cn − An). The
second solution P

(2)
s is algebraic, z = 1 and κ = n− [Cn−1 +Bn−1 +An−1]/(Cn −An).

The general solution of (4) is Ps = F1P
(1)
s +F2P

(2)
s , but F2 is negligible: All foams gener-

ated by local elementary topological transformations (ETT) are described by the exponentially
decaying solution P

(1)
s . This is because the physical process of statistical equilibrium under

ETT, constrained by 〈s〉 = 6, has nearly exhausted all the nonvanishing P (1)
s by s ≈ 6+

√
µ2.

The algebraic solution P (2)
s is a negligible, smooth background, with F2 [ζ(κ)− 1− 2−κ]� 1.

(ζ is Riemann’s zeta function).
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Example: cell division only [6]. – i) Algorithm S2 (random selection of an edge of the
dividing cell), P (m|k) = k/6. The algebraic tail (κ = 3) appears for s > 125, where P (1)

125 =
10−21 = F2(125)−3, thus F2 = 10−14. µ2 = 8.17. ii) By contrast, the algorithm S1 of [6]
(random selection of the dividing cell), P (m|k) = 1, yields an integrable rate equation, with
n = 2, C2 = A2 = [〈m(s)〉−6]/µ2 > 0 (m(s) is the average number of sides of cells neighbours
to an s-sided cell). z = 1, the decay is algebraic, Ps ∼ s−κ with κ = 1/A2.

Example: cell disappearance. – One assumes that only three-, four- and five-sided cells
can disappear, in agreement with von Neumann’s law [1, 4] and with simulations [7]. Thus,
P (d|k) = 0 for k ≥ 6. The sum rules (3) yield ∆(−1|3; d) = 1, ∆(−1|4; d) = ∆(0|4; d) = 1/2,
∆(−1|5; d) = ∆(0|5; d) = 2∆(1|5; d) = 2/5. The polynomials

a(s) = γ(3)As,3 +
[
γ(4)/2]As,4 + [2γ(5)/5

]
As,5,

b(s) = −γ(3)As,3 − [γ(4)/2]As,4 − [3γ(5)/5]As,5 + 1,

c(s) = [γ(5)/5]As,5 (8)

are then linear in s in a local mean-field approximation, for s ≥ 6, where γ(k) = PkP (d|k)/∑
s[PsP (d|s)]. The correlators As,k have been defined in eq. (2). Thus,

a(s) + b(s) + c(s) = 1, (9)

and eq. (4) has asymptotic integrability. As in the cell division case, the physical solution Ps is
unique with 〈s〉 = 6, µ2 < 10, and it decays exponentially for large s. It is only for extremely
large values of s, where Ps is negligible, that the algebraic tail dominates the exponential.

In the global mean-field approximation [12], a, b and c are constants, still adding up to
one, eq. (4) is no longer asymptotically integrable, and one must use ad hoc criteria to se-
lect the physical solution which is exponentially decaying. Flyvbjerg’s [13] is also a global
mean-field approximation; the edges of the disappearing cell are redistributed to any cell of
the foam, but in proportion to the number of sides of the latter. The coefficients of (4) are
polynomials of degree 1, summing up to q(s) = 1, and the rate equation is asymptotically
integrable. But Flyvjberg ascribed the universality of the distribution Ps not to the asymp-
totic integrability of the equation as argued here, but to rather artificial initial conditions
involving the probabilities of 2-, 1- and even zero-sided cells. Flyvbjerg’s global mean-field
approximation is mathematically identical to the “topological gas” (σ = 1/6, no correlation
between neighbours, Aks = sk/6), which is only a limit, inaccessible experimentally or through
simulations [4, 6, 9]. It is also the approximation used by Marder, Beenakker and Yekutieli
(see [10] and references therein).

Conclusions. – Local, topological correlations between cells determine the stationary
state of foams. In a local mean-field approximation which accounts for nearest-neighbour cor-
relations in statistical equilibrium, the rate equations are asymptotically integrable and have
one unique solution with exponential asymptotic behaviour in s. The asymptotic integrabil-
ity of the equation, which imposes a unique and universal solution, is absent in the global
mean-field approximation. Thus, local environment and statistical equilibrium mould the sta-
tionary distribution of cell shapes, as had been surmised in the epidermis of mammals [7],
and confirmed in simulations [4]. The single exponential decay of the physical distribution
Ps ∼ exp[−βs], imposed by asymptotic integrability, is indeed the Boltzmann distribution
resulting from the conservation of 〈s〉, through maximum entropy [1, 4].

The same asymptotic integrability holds for cell division and disappearance combined, but
the difference equation is then of order three.
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The foams discussed here are purely topological and combinatorial, without any control
through the energy carried by interfaces. To impose constant energy, and control disorder, the
variance µ2 of the distribution Ps should also be constrained, besides (2). As a consequence,
Ps would have a Gaussian tail for very large s, with an additional equation of state, Lemâıtre’s
law, relating µ2 to 1− P6 [14].

∗ ∗ ∗
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REFERENCES

[1] Weaire D. and Rivier N., Contemp. Phys., 25 (1984) 59.
[2] Dubertret B., Rivier N. and Peshkin M. A., J. Phys. A, 31 (1998) 879.
[3] Dubertret B., Aste T., Ohlenbusch H. M. and Rivier N., Phys. Rev. E, 58 (1998) 6368;

Ohlenbusch H. M., Rivier N., Aste T. and Dubertret B., DIMACS Ser. Discrete Math.
Theor. Compu. Sci., 51 (2000) 279.

[4] Rivier N., Disorder and Granular Media, edited by D. Bideau and A. Hansen (Elsevier) 1993,
p. 55.

[5] Rivier N., Arcenegui-Siemens X. and Schliecker G., Fragmentation Physics, edited by D.

Beysens, X. Campi and E. Pefferkorn (World Scientific) 1995, p. 267.
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