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Glossary of Symbols

CBE

(L)
++ (+-)
zz (zy)
R (9)

wavelength

wavevector, absolute value of wavevector (wavenumber)
wavelength and wavenumber in air

scattering angle between Em and Eout

scattering vector Eout — Em

backscattering angle between —Em and Eout

backscattering vector Eous — (—Em)

dimensionless size parameter, k times particle radius
diffusion constant

scattering mean free path

transport mean free path

energy transport velocity of light in multiple scattering media
coherent backscattering

coherent backscattering enhancement

relative amount of multiple scattered light to total amount
(single + multiple scattering) of scattered light

same (orthogonal) incident and detected polarization state
same (opposite) incident and detected circular polarization
same (crossed ) incident and detected linear polarization
real (imaginary) part of complex number



Chapter 1

Multiple Scattering of Light: Coherent
Backscattering and Transmission

Introduction

In this chapter we discuss the propagation of light in multiple scattering me-
dia, i.e. in materials which appear white or turbid. These materials probably
contribute the most common ‘aggregate state’ in nature, examples ranging
from paint, paper, bio-materials, milk, rock to clouds. In multiple scattering
samples, the incoming light is scattered successively numerous times, thereby
rapidly losing the memory of the incident direction. After some scattering
events, the propagation is a diffusion process. Consequently, the light emitted
from the turbid media is also diffuse, the intensity varying only weakly with
respect to the angle of observation (see fig. 1.2). The diffuse propagation of
light, through a slab of a turbid media for example, is well understood since
the beginning of the 19th century and is known as the Schwarzschild-Milne
problem [1]-[3].

When using coherent incident light from a laser, a typical interference pattern,
the so-called speckle pattern, is formed in the outgoing light (see fig. 1.1). This
speckle pattern cannot be explained by the diffusion model of photons but is
better described by a random walk of wavelets with amplitude and phase, as
in Feynman’s path model. Thus, the amplitude and phase of the outgoing
waves are the result of the random superposition of all possible light paths in
the sample. One finds [4] that, independent of the sample, the intensity dis-
tribution of the speckle spots is more or less exponential and that the average
speckle spot size is proportional to the wavelength and inversionally propor-
tional to the light emitting area.
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When the scatterers move, the light paths in the sample change, leading to
rapid fluctuations in the speckle pattern. Thus the temporal fluctuations of
the speckle pattern, i.e. the average, time-dependent intensity correlation func-
tion of one speckle spot, give information about the motion of the scatterers.
With this novel, powerful technique, which is called quasi-elastic multiple light
scattering or Diffusing Wave Spectroscopy (DWS), it is possible, for example,
to determine the mean square velocity and thus the average particle size of the
scatterers in the (liquid) sample.

In this chapter we will not consider aspects of this ‘dynamic’ multiple scat-
tering for which the reader is referred to the current literature [5]. We focus
on ‘static’ multiple scattering techniques, which are also applicable to solid or
very viscous materials. The most promising and newest technique in this con-
text makes use of the phenomenon of coherent backscattering (CB), which we
will treat in greater detail. In fig. 1.2 the speckles are averaged out by moving
the sample thus giving a more or less homogeneous scattering intensity. This
is not quite correct in the backscattering geometry as can be seen in fig. 1.3.
One observes a narrow, twofold enhancement of the multiply scattered inten-
sity visible in the direction exactly opposed to the incident beam. It arises
from the constructive interference between each light path and its reversed
path. In the backscattering direction, both paths will always have the exact
same length, independent of the movement of the scatterers. Consequently,
due to this symmetry, there is an interference enhancement of the intensity by
a factor of two. For angles deviating slightly from the precise backscattering
direction, the intensity rapidly decreases to its diffuse value which is obtained
by the incoherent summation of all light paths. The width of this so-called co-
herent backscattering cone is proportional to the wavelength times the ‘optical
thickness’ 1/ £*. The transport mean free path £* corresponds to the ‘sighting
distance’ of the turbid media. As ¢* is always smaller than the light emitting
area, the cone width is always larger than the average size of a speckle spot.
However, a speckle spot can be much brighter than twice the average intensity.
For a dense fog, ¢* is about 30m, for paper it is about 10um and for a good
white paint it may be 1um. The width of the coherent backscattering cone of
paper is about one degree, for a white paint 10 degrees.

The phenomenon of coherent backscattering is not restricted to light but may
occur for any kind of waves. Moreover, it does not only show up outside the
sample by the presence of the coherent backscattering cone but also inside a
turbid media: Due to CB more light is scattered back to the light source than
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expected by a simple diffusion model of photons. Consequently, from the fact
that each scatterer is a light source in itself to which a part of the light is
scattered back, CB reduces the diffusion velocity in a turbid medium. This
so-called weak localization of waves was found experimentally, for example in
the electrical conductivity of semiconductors [6] and in the two-dimensional
diffuse propagation of electrons on a liquid helium film, where the electrons
are quasi-elastically scattered by helium atoms in the gas phase [7]. A strong
localization was predicted by Anderson (8, 9] to occur in very strongly scatter-
ing media, where the wave is trapped by the disorder. The result is a metal-
insulator transition as a function of the scattering strength. The interpretation
of the electron localization as such is difficult due to the Coulombic interac-
tions. Therefore, observation of the analogue in the case of electromagnetic
waves would be very important and is a great matter of debate [10, 11] to this
day. We will not enter this debate but refer the reader to the recent literature
[12, 14], and restrict ourself to ‘weakly’ scattering materials (which include
familiar turbid materials) and the phenomenon of the coherent backscattering
cone. The CB-cone for light which was first observed in 1985 [15, 16, is central
to ‘modern’ multiple light scattering physics. Apart from the fact that it is the
precursor to localization phenomena, it reveals many other interesting aspects
of multiple light scattering. It can be used for the characterization of turbid
media. It can even be observed with sunlight, for example, in the brightness
of the moons of Saturn and Jupiter. And it is partially related to the halo,
seen in the so-called ‘Glory’ effect, which manifests itself in bright, coloured
rings around ones own shadow in the sunlight scattered back from clouds or
fog [17, 18].

In contrary to the CB-cone observed in backscattering geometry, localiza-
tion phenomena are better observed in transmission geometry. In order to
interprete them as such, a good understanding of ‘classical’ transmission the-
ory is necessary. Therefore, for completeness, we will briefly summarize the
principles of this theory. For ‘non-classical’ effects like localization phenomena,
or long-range speckle correlations the reader is referred to the current literature
(12, 14].
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Figure 1.1: A typical speckle pattern produced Figure 1.2: Diffuse emitted light from a piece
by laser light scattered by a turbid sample. In of paper. The intensity varies more or less ac-
fig. 1.2 no speckle pattern is visible because the cording to Lambert’s law: I(¥) o cos(d¥), 9 being
sample was moved during the exposure time. the angle of observation with respect to the nor-
Thus the speckles are averaged out in analogy mal at the surface.

to diffuse illumination.

Figure 1.3: Simplified experimental setup to observe coherent backscattering. Sample: Powder
of microscopic crystals of BaSOy4 which is rotated to destroy the speckles. Laser light is directed
to the surface of the sample using o semi-transparent mirror. Part of the backscattered light
passes through this mirror again, then a linear polarizer sheet and finally falls on a screen. The
brighter spot in the centre of the backscattered light is the CB-cone.

Note: Figs. 1.1,1.3 are contrast enhanced in the black and white version.



Light propagation 5

1.1 Light propagation in single and multiple
scattering samples

In weakly scattering samples, the intensity I(z) of a (plane) light wave is
attenuated exponentially along the propagated distance z because of scattering
according to the Beer-Lambert law:

I(z) = I(0) exp(—z/f) (1.1)
£ = 1/pNOscat- (1.2)

The characteristic length £ is called the scattering mean free path, py is the
number density of scatterers and o, the total scattering cross section. Con-
sequently, the system is in the single scattering regime as long as z < £. Ab-
sorption brings in additional attenuation by a factor exp(—z/4,), £, being the
average absorption length.

For z >/ we have to distinguish between isotropic and anisotropic scattering.
Rayleigh scattering, i.e. scattering from particles which are much smaller than
the wavelength in the surrounding medium, is isotropic [19]. For scatterers,
whose size is comparable to or larger than the wavelength, more light is scat-
tered in the forward direction (normally). Anisotropic scattering of (spherical)
particles is called Mie-scattering which reduces to Rayleigh-Gans-Debye scat-
tering if the contrast of the scatterers with the surrounding medium is very
small [19]. The anisotropy can be expressed by the terms

cos(#) o(0)d2
(cosByy = / ©) o) or (1.3)

/ 7(6)d

o(q)g>d
1 Jowid O (1.4)

2 )
2k / o(q)qdq

where 6 is the scattering angle between incident and detected light, k =27/
and ¢ = |Eout — Ezn| = 2k sin(#/2) are the absolute values of the wave and
scattering vector, respectively. The average is taken over the differential cross
section o(6),! i.e. the form factor of the scatterers. In addition, the ensemble
of scatterers may have some structure, especially at higher volume fractions.

(1 cosf),] ™" =

1 5(8) depends only on 6, i.e. it is rotationally invariant about the incident direction
because the incident light is considered to be non-polarized.
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In this case the average in egs. (1.3,1.4) has to be taken also over the structure
factor of the medium [20].

In the multiple scattering regime, the diffuse light propagation can be de-
scribed by a random walk model. A random walk is characterized by the mean
square displacement (|7|?)=(z?) + (y*) + (2?) of the propagated distance. In
one direction of the coordinate system, one finds for isotropic scattering:

(@) = n{(az)’) (1.5)
b2 2.0

= Q0 =7 (1.6)

where n is the number of steps of the random walk, ((az)?) the mean square of

the projection of the step length on the xz-axis, + is the path length and d the

dimensionality of the space in which the random walk takes place. The factor

2 in eq. (1.6) follows from the exponential step length distribution according to

the Beer-Lambert law which is also valid inside a multiple scattering medium

for each wavelet, after each scattering event. For anisotropic scattering, i.e.

{cosB) # 0, one finds (in analogy with the radius of gyration of rigid polymers
[21], see fig. 1.4):

(FP? = 0<< > &) = n{ &%) + 23 &)
= n(&F7) + 2(47)? > (cos )~
B o Lo [ m{cosB) {cos6)(1 — {cos6)™)
= n{ar) + 247) (1 —{cosf)  (1— (cosh))? )
5 M{cosf)
1 — {(cos®)’

~ (&) + 2(4F) (1.7)
where we assume that the Ar, are independent and where we used
{cos (chzi +1 Hk)) = (cos#)’~%. For an exponential step length distribution,
one obtains with (A7) =¢ and (A7) =202

oy (M _ 208 1 2 £
(2% = d ~ d 1—/{cosh) —4d° 1 — (cos )
250%  2n* 4+’

= = (1.8)
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Now, compared to eq. (1.6), the scattering
mean free path £ is replaced by a new
characteristic length, the transport mean
free path £ = £/(1 — (cos®)). At the
same time the number of steps n must
be replaced by an effective number of
steps n* in such a way that the path
length «= nf = n*¢* is unchanged.
Consequently, for large n*, a ran-
dom walk of n correlated steps of average Figure 1.4

Af,

length £ can be replaced by a random walk of n* non-correlated steps of average
length ¢*. In the following we will use the symbol £* when we refer to the
transport mean free path, even if £*= £. We are now able to give a definition
for the multiple scattering regime by n*=. /£*>>1.

1.1.1 The diffusion approximation

Another model used to describe multiple scattering is the diffusion approxima-
tion where the diffuse transport of energy is considered. The energy flux 7is
given by 7'= —D§p, where D is the diffusion constant and p(7,¢) the energy
density distribution. The light intensity Tis given by the energy flux times sur-
face area. The temporal variation of p is given by 0;,p = —&jf Consequently,
the energy density distribution must follow the diffusion equation:

1
atp(Fa t) = DV2P(F, t) - T_p(Fa t)' (19)

The second term describes absorption with the average characteristic absorp-
tion time 7,. Using the ‘Ansatz’ p o exp[i(kz — wt)], one obtains the general
solution (for simplicity we restrict ourself to one dimension?):

p(z,t) = / * gt/ragk Dt (A[k] sin[kz] + Blk] cos[kz]) dk. (1.10)

The free space Green function of the differential equation (1.9) for a diffusion
which starts at =0 follows immediately from eq. (1.10) as p(x)=p(—z) and

2 If p is independent in &,y and 2-coordinates, the diffusion equation can be separated and
we have pr(t) = pg(t) py(t) p2(£). Due to the boundary conditions for ¢ — oo, the separation
constants must be zero.
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Pi—0 =0z—0. Thus, one obtains A[k]=0 and B[k]=1/27 and after integration:

2
exp(—;5;)

x,t) = . 1.11
p(z,1) JarDt (1.11)
This is a Gaussian distribution with the variance®

(a;2) = /a;2p(a;, t)dx = 2Dt. (1.12)

Using egs. (1.12,1.8) we obtain the following relation between the diffusion
constant and the transport mean free path:

D =g £*/d, (1.13)

vg =~ /t being the energy transport velocity.

1.1.2 Cross-over from single to multiple scattering

Most explicit information about the scatterers is obtained by single scattering
experiments. However, many materials are naturally in the multiple scatter-
ing regime and cannot be diluted for different reasons. Therefore, the aim
of this chapter is to study what can be learned about the scatterers in the
intermediate and multiple scattering regime. For n*>10 the diffusion ap-
proximation and the random walk model are equivalent. However, for n* <10
the diffusion approximation is only a poor estimation. In the following we
will discuss the random walk model for a small number of scattering events
for isotropic scattering. For simplicity we restrict ourselves to one dimen-
sion. According to Beer-Lambert law (eq. 1.1), each step between two scat-
tering events has an exponential step length distribution p(z) = exp(—z/£) /L.
Thus, after the first scattering event, the normalized intensity distribution is
p1(z) = exp(—|z|/€)/2¢. The intensity distribution after the second scattering
event po(x) is obtained by the probability to go from the origin to any point
x and from y to the final point z:

M@=Am@—ﬁm@—®@- (1.14)

This corresponds to a convolution of a function with itself. As the two steps
are independent of each other, one obtains with the convolution theorem for
the Fourier transforms po=p?. In one dimension, g; =1/(1 + k2¢?) and thus

po(e) = 5- [ %dk = 271+ Jal). (1.15)

Tltis (72) =(a?) + (%) + (22).
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By analogy, one obtains for three scattering events with g3 =p3: p3(z)=1/16-
e~171(3 4 3|z| + 322) and so on. Only for more than about 10 scattering events
(1+ k?¢%)™™ can be approximated by the Gaussian exp(—nk?¢?), for which the
Fourier transform is also Gaussian and given by eq. (1.11). Consequently, only
for n>10 the propagation is well described by the diffusion equation (1.9).
For less than 10 scattering events a significant ballistic part in the propagation
survives which is not described by the diffusion equation.

Experimentally, the multiple scattering regime is studied best in transmis-

sion through a sample which is many times thicker than £*. Of course, only
informations about averaged quantities such as the transport mean free path
£*, the transport velocity vg and the absorption length £, are obtained. If the
sample has an anisotropic structure, £* and vz may be different in different
directions. One may measure the total intensity as a function of the sample
thickness, as well as the time resolved intensity in a time of flight experiment
of photons through the sample or, equivalently, the frequency correlation func-
tion. The intermediate regime is investigated by using thinner samples with
thickness’ of the order of £*. In this regime the intensity becomes an explicit
function of the anisotropy of the scattering, i.e. the ratio £*/£, and the depolar-
ization of the light. In fact, until now we have only considered ‘scalar waves’.
This is a good approximation in the multiple scattering regime as in three
dimensions the state of polarization changes continuously along the scattering
path. Normally, already after some scattering events the light is completely
depolarized on average over all paths. On short paths, however, some degree
of polarization may persist. The ratio £*/¢ and the depolarization give some
additional, (qualitative) information on the scatterers. However, the prepara-
tion of samples of thickness ¢* may be difficult.
In the backscattering direction, contributions from the single, intermediate and
multiple scattering regimes may be comparable even for very thick samples.
The backscattering geometry may thus be more interesting in many cases as
the preparation of thin slabs of the sample is avoided. However, quantitative
interpretation of the measurements may be difficult due to the overlapping of
the three regimes.

The multiple scattering regime is well described by the diffusion approxi-
mation. Another model would be the transport theory, using the Boltzmann
equation which is a balance equation for the energy density and the flux into
and out of a small volume element. In the following we will not discuss this
approach, as this has already been done elsewhere (for literature see [22]) and
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as we will obtain the relevant results solely using the random walk model and
a slightly modified diffusion approximation. The intermediate regime is better
described by a general radiative transfer theory (for literature see [23, 24])
which, however, goes beyond the scope of this chapter. Moreover, this theory
is more technical and gives no new physical insight. Instead, we use solely the
random walk model, which is a powerful tool, especially when implemented
with numerical simulations of the Monte-Carlo type. In the case of coherent
backscattering, these simulations give particularly satisfactory results. They
have the advantage that experimental parameters like sample geometry, laser
beam profile, type of scatterers, surface effects and polarization can be included
without difficulties.

1.1.3 Influence of a boundary

So far we have only considered
light propagation in an infinite
space. However, both the in-
cident and the detected light
have to cross the boundaries of
the sample. Therefore a proper
description of light transport
near a surface is required. These
surface effects, which are as yet
poorly understood, may limit
the quantitative interpretation
of experimental data as the sur-
face introduces, in a non-trivial

7

U

z=0

Figure 1.5: reflecting surface

way, additional scattering as well as internal reflections, i.e. reflections when
the light wave impinges on the sample surface from the inside. In the following
we will treat this problem in the diffusion approximation in order i) to get an
analytic expression for the CB-cone later on in section 1.3.1. ii) to obtain an
analytical expression for the transmission geometry which is more difficult to
treat with simulations. Let us first consider a totally reflecting surface (fig.
1.5) located at z=0. In this case, the probability p'(A — B) to go from A
to B in the presence of a reflecting surface will be the free space probability
p(A — B), given by eq. (1.11) with z =B — A, going from A to B, plus the
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probability going to the image point —B:
reflecting surface:  p'(A— B) = p(A— B) + p(A— —B). (1.16)

The additional term corresponds to the paths that have been reflected an
uneven number of times and whose mirrored paths would go to the mirror
image of point B.

If the surface is absorbing or
transparent, the probability to
go from A to B is given by the
free space probability to go from
A to B minus the probability
of all paths that pass outside
of the sample (which is not a
trivial function). As all these
paths cross the surface, one could
suppose that the probability of
the paths that leave the sample
is given by the probability to go

Figure 1.6: open or absorbing surface

from A to any point C on the surface and from there to B. As the probability
to go from C to B is equal to the probability to go from C to —B, one
would finally find for the density distribution in presence of a transparent
wall: p'(A— B) = p(A — B) — p(A — —B). However, this is only a poor
approximation as in this case, p’ is zero at the surface. In addition there is
an intensity flux out of the surface. This is a non-physical result as no flux
can come from a region where the energy density is zero. In other words,
the diffusion equation (1.9) is only reasonable if p > |7|/vg. The error is to
assume that the random walk must hit the surface at some scattering event
ny <n (more precisely n*). In reality, the random walk only crosses the surface
between the scattering events n; and n; + 1. Consequently, the probability to

go from A to B in n steps in the presence of an open surface at z=0 is given
by

open surface:  p'(A—B) = p(A— B) — > p(A— 2o, 11)p(2,— B, na),

ni+n2=n
(1.17)
where p is the free space probability and z, the first point of each random walk
outside the sample. This is different to the case of reflection where a step of a
random walk can be reflected at any point between the n;’th and (n; 4+ 1)’th
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event. Now we will propose an approximation which satisfies eq. (1.17). First
we make the approximation that p’ is independent in z, y and 2. Then, the
z- and y-components of p’ are given by the free space probability (1.11) with
Dt=n*¢** /3. If 2, is independent of n; and ny, the z-component of the second
term in eq. (1.17) can be approximated by:

3" pa(A— 20,1)px (20— B, o) & /0 2(2)0:[A— (=B — 22,), 1] dzo, (1.18)
ni1+nz=n

where we have used the fact that the free space probability going from z, to
B is equal to the probability going from z, to —B — 2z, which is the image
point of B with respect to the surface at z,. The function p(z,) is the nor-
malized probability distribution of z,. With the approximation that p(z,) and
p[A— (=B — 2z,)] are independent (what is justified if n* > 10), the following
expansion around the point Z,= [ z,p(z,) dz, can be made:

[ popl A= (=B = 22,)] ey = (1.19)
pelA— (=B = 22)] + [ p(2)Olz - 2% .

The linear term cancels as (2, — Z,)p(z,) is zero. The approximation is better
the smaller (2, — Z,)?)p(z,) With respect to (A + B + 22,)2 and n*¢**. Conse-
quently, one obtains for the energy density distribution in the z-direction, in
the presence of an open (or absorbing) surface at z=0:

open surface:  p,(A—B) = p,(A—B) — p,|[A—>(-B —2z,)], (1.20)

where the function p represents the free space propagation. The length Z,
is the average penetration depth of the first step from the real sample into
the space behind the open or absorbing surface. Now, the energy density
distribution is zero at the point Z, in front of the surface which does not
contradict the diffusion equation and the considerations made above. Often,
Z, is expressed in units of the transport mean free path Z, =~ ¢*. Assuming
isotropic scattering and a constant intensity distribution inside the sample,
one finds v = 2/3. The same value is obtained by the transport theory
[22]. Assuming instead a linearly increasing intensity distribution inside the
sample, which would vanish at a distance y£* in front of the surface, gives
v =0.707. This is very close to the ‘exact’ value* of 0.7104. However, since

4 This problem is called the Milne problem, which describes diffuse transport through a
slab.
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~ depends on the intensity distribution close to the surface, the ‘exact’ value
obviously depends on the experimental conditions, for example if the surface
is partially reflecting. For a random walk in one dimension and isotropic
scattering we find p(z,) = exp(—=2,/f)/¢ and consequently v =1 independent
of the intensity distribution close to the surface. The reason for this is the
self-similarity of the exponential function. Thus, in the one dimensional case,
independent of the position of the n;’th scattering event, the distribution of
the distances z, of the (n; + 1)’th scattering event outside the sample from
the surface, is always exponential.

It is not evident to what extent the value of v (besides its dependence on
the intensity distribution close to the surface) also depends on the anisotropy
of the scattering. However, by simulating (Monte-Carlo simulations) the
intensity distribution inside a slab of thickness L (according to curve 1 in fig.
1.7, section 1.2), we did not find any differences up to an anisotropy £*/£<30.
Finally, one should realize that the parameter v does not follow from the
diffusion equation but must be added ‘by hand’. In addition to the problem
of the best value for 7, in real samples one normally finds a non-trivial
superposition of internal reflections and transmission events. Therefore,
especially in the backscattering geometry, description of the problem in terms
of egs. (1.16,1.20) is only a poor approximation. A better approach is given
by the radiative transfer theory or by Monte-Carlo simulations. In both
approaches the problem of v does not appear.
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1.2 Transmission geometry

If light is transmitted through a sample, usually an infinite slab of thickness
L > (* oriented in the z,y-plane, the light paths are rather long, i.e. n =
» /€1, and the problem is well described by the diffusion approximation,
while Monte-Carlo simulations become more difficult. With the ‘image point
technique’ one obtains a series of image points (like a hall of mirrors) by
multiple reflections with respect to both front and back of the sample.

Let us assume the situation in fig. 1.7, of a slab of a turbid medium of thickness
L between the points z=+£* and z=+v£* + L. In analogy with section 1.1.3,
the diffuse intensity distribution should be zero at a distance v £* in front
and behind the slab. In the following, for simplicity, we will set £*=1 and
introduce the effective thickness L' = L 4+ 2y £*. Now, the probability to go
from A to B is the free space probability p(A — B) minus the probability to
go to the two image points with respect to the surfaces at z=0 and z=1L/, i.e.
to the points —B and 2L’ — B. However, the probability to go to these image
points is not the free space probability as in the case of a single surface but
is the probability in the presence of the second, opposite surface and so on.
Consequently, one obtains two series of image points which must be subtracted
from p(A— B):

J(A=B) = p(A—B) (1.21)
—{p(A—B°) — { p(A— B®) — { p(A— B*)..}}}
—{p(A—B") — { p(A— B"®) — { p(A— B**")..}}},

where B°=—B and BY =2L' — B are the image points of B with respect to
the surfaces at z=0 and z=L’, respectively. BY' =2L’+ B is the image point
of B with respect to L' and so on. Putting all terms together, one obtains:

P(A=B)= > p(A—=B+2mL')— p(A—2mL — B). (1.22)

Assuming that the z, y and z-components are independent, one obtains in the
z- and y-directions the free space distributions p,p, and in the z-direction:

’ 1 ot _(zB+2mL'—z )2 _(2mL'—zB—zg)2
p,(A—Bt) = Ji.Di Z <e Dt —e D¢ ) (1.23)

The sum converges quickly, as for m larger than say +2 the exponents are
already very large.
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Figure 1.7: Diffuse transmission
through a slab of thickness L and infi-
nite extension in x,y-directions. Curves
1)-8) are solutions of the diffusion equa-
tion with these boundary conditions, as-
suming that the diffuse flux starts ot
a depth £* inside the sample. Curves
1) and 2) give the steady state inten-
‘_ sity distributions, according to eq. (1.28)
. i;%yi’“ 'wz’ihout and ‘wz’th fzbsorptz’on (L =
z  3L7), respectively, integrated over the
o L oyl z,y-directions. Curve 3) is the time-
N L' > dependent intensity distribution accord-
ing to eq. (1.23) inside the sample af-

ter time t = £*2/D, where Ly, = 34*.

£y
=
k:

The problem of the diffusion through a slab can also be solved directly
using the diffusion equation (1.9). For this geometry, the general solution
(1.10) reduces to (without absorption):

, X _n?xp, . (N7
pL(t)=> e 7 *A,sin <?z) : (1.24)
n=1

With the condition that the intensity distribution at ¢ =0 is a delta function
at the point A, i.e. p,(t=0) = §(z — z4), it follows that the factors A, have
to be the elements of a Fourier row expansion of the delta function. Thus one
obtains:

2 X _w22p, . (0T . (nmw
pL(A—=B,t) = o 7;16 “77 Dtsin <?zA) sin <sz) : (1.25)
Both series are identical and can be transformed into each other by the Pois-
son sum formula.? Absorption can be easily added by the additional factor
exp(—t/7,) = exp(—~/4,) = exp(—Dt/L?%), where £, =vgT, is the character-
istic, ‘microscopic’ absorption length along the path and L2 = Dr, L 0, 0%/3
corresponds to a characteristic absorption distance in real space. The first

5 A simplified version of the Poisson sum formula reads [25]:

Z f(n) = Z /_oo e~>"™ £ (a) da. (1.26)

n=—o0o m=—00
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equation (1.23) is more appropriate for calculating the time-dependent in-
tensity distribution, whereas the second form (1.25) can be integrated and
summed more easily in order to obtain the total, time and angle-integrated
diffuse flux through the slab. This integration will be performed below. First,
we integrate over p, and p, which gives only a factor 1. The steady-state energy
density (integrated over the z- and y-directions) is obtained after integration
of (1.25) over time:

plot /dm/dy/dtp(A—)B) 2 ism(g'z“‘)sm(%z’g) (1.27)
=1

1 n2x2

This is the Fourier row expansion of [26]:

L, cosh( |ZB 24l cosh( S EERA )

oot = = — (f_) (1.28)
epza La sinh (L'_J) sinh (%‘1)
= D sinh ( a) (1.29)

Without absorption, i.e. for L, — oo, p%* is triangular with the maximum
value %@ at z4 (see fig. 1.7). Note, that p®® was integrated over the z-
and y-directions, which corresponds to many experiments where the extension
of the incident beam is several times larger than L. The time and angle
integrated flux I;,; through a slab of thickness L, which starts at the point z4,

is obtained according to the relations 7= —DV p' and L, = [ jdz dy:

d tot cosh < ” ) sinh ( La)
Ly = —D —* = Io(24) > (1.30)
dz Z—’Y+L Slnh (%i)

where we have replaced the effective thickness L' by the real thickness L =

— 2v£* and multiplied all lengths by 1/£* (at the beginning, £* was set to
1). We should note that in the transmission geometry the precise values of
and z4 are less important as both values are much smaller than L and thus
Li,s(L) is only changed by a small constant factor. I,(z4) is the intensity at the
starting point of the diffusion. To a good approximation we can assume that
the diffuse flux starts at a depth £* inside the sample, so that 24 =(y + 1) £*.
With this starting value, one obtains in the limit of zero absorption:

: Qe 2*
Jin L) = S0 )2 (131)
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This result resembles Ohm’s law. The same result is obtained by the transport
theory [22], where y=2/3. With absorption, if L>> £* and L>> L,, one obtains
from eq. (1.30) that the transmitted intensity is proportional to exp(—L/L,).
This justifies calling L, the characteristic absorption thickness.

1.2.1 Time-resolved transmission experiments

In analogy with eq. (1.30), the time-dependent, transmitted intensity I(¢)
through a slab of thickness L is obtained by differentiating eq. (1.23):

dp® (t)
dz

I(t)=-D (1.32)

z=L+vy

Instead of this exact relation, the probability to go from one side of the slab to
the other is used frequently in the literature, i.e. eq. (1.23) with z4=(y+1)£*
and zg= L+~ £* (see fig. 1.7). One can show that with these parameters p'(t)
is proportional to a linear expansion of I(¢):

J(t) = % (I(t) 40 [%*] ) . (1.33)

Of course the same relation is also valid between the total intensity I,,;(L) and
p' of egs. (1.29,1.30). The most appropriate measuring technique to obtain a
time of flight distribution is time-correlated single photon counting [32] where
the sample is illuminated by a pulsed laser and the time of flight of single
photons which succeed in crossing the slab is measured. As the laser system,
we used a cavity-dumped dye-laser, pumped by a mode-locked Ar*-laser. This
technique is appropriate as long as the samples are very turbid and thick. For
larger values of £* and thinner samples, where the transit times are shorter but
the transmitted intensity is higher, streak camera measurements are preferable
as they have a higher temporal resolution.

Fig. 1.8 shows a time of flight measurement, i.e. I(t) through a slab of TiO,-
powder. The experimental data were fitted using egs. (1.32,1.23). The fits
are controlled by comparing the numerically integrated pulse shape with I,
given by eq. (1.30). Thus, the diffusion constant D and the absorption rate
7o=L2/D are obtained. Theoretically, using the relation D=vg£*/3, £* can
be obtained as well. However, especially in optical dense media, the energy
transport velocity vg is not a well known parameter. Due to possible resonant
scattering within the scattering particles, vg may be larger by about a factor
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Figure 1.8: Dots: Time of

3 T
° o c-;?(p::-)rlirlT19Ir1tl S P flight measurement of photons
g',fé‘;f,f;‘tiﬂﬁ' ,I;vithout_\\\\' through a slab of TiOs-powder
,L / szﬁlgﬁzed)\_ (volume fraction 29%). Sample
- thickness 7.38mm, A=0.580um.

Solid lines: Several fits accord-
ing to the diffusion equation. A
fit without internal reflections at
the surface gives D = 19m?/sec
and Lo =0.688mm, independent
of vg (we chose the two cases

t[nsec] of n = 1.51 and 2.7, obtain-
ing £* = 0.287um and 0.514um, £, = 1.65m and 0.92m). Assuming internal
reflections of 70% (this corresponds to a mismatch of the index of refraction at the
surface of Msample/Mair = 1.7) gives D = 20m?/sec and L, = 0.683mm. The spike
at t = 0, which is experimentally very difficult to suppress, corresponds to light

250 §00

t [nsec]

0 50 100 150

which passed through cracks or around the sample. In time resolved measurements
this fraction of light can be distinguished easily. In addition, it provides the
time-resolution of the setup. For comparison, the inset shows the pulse shape if
there would be no absorption.

of two than the velocity given by the average index of refraction [27]-[31]. On
the other hand, on measuring £* by static light scattering methods, i.e. total
transmission measurements or coherent backscattering, vg can be determined.
As already mentioned in section 1.2, for relatively thick samples, the time de-
pendence of I(t) is almost insensitive to z4 and -y; only the total intensity is
changed. However, there is a small dependence on internal reflections of the
light as can be seen in the evaluation depicted in fig. 1.8. In order to include
internal reflections in eq. (1.23), we assume that a fraction (re) of the light is
reflected back into the sample and a fraction (¢r =1—re) crosses the surface.
By combining the method of multiple images with egs. (1.16,1.20) one obtains:

0, (A—B) = i {( |2711n| )(—tr)|2m|_" re"plza— (2mL' + zp — sign[m] 2n)) (1.34)

m,n=—o00

+ ( |2mn+ 1| )(—t’f‘)|2m+1|_n renp[zA —)—(2le + 2B — 31gn[2m + 1] 2”’}’)]}

For large times, i.e. in the decreasing part of the pulse, only the lowest Eigen-
value n=1 in eq. (1.25) survives. Consequently, the tail of the pulse decreases
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in proportion to exp[—(z—z + 25 )Dt], where we have included absorption (which
should not be too large). A. Genack has discussed this aspect more precisely
in [13].

1.2.2 Frequency-dependent speckle correlations®

Alternatively to the time-of-flight measurements discussed in the previous sec-
tion, the frequency-dependent intensity correlation function of the speckles can
be measured. The speckle pattern is the consequence of the random superpo-
sition of all (multiply) scattered light paths in the detector. If the sample is
illuminated with a single coherent beam, one normally observes two indepen-
dent speckle patterns corresponding to the two orthogonal polarization states.
Therefore, an analyzer must be put in front of the detector in order to observe
one of the independent speckle patterns. The normalized intensity distribu-
tion of a speckle pattern is given by p(I)= %e‘l/ ) where (I) is the average
intensity. This follows from the facts that the distribution of the random light
amplitudes F is Gaussian and that |E|>=1. The denominator in the exponen-
tial follows from the definition of the average intensity (I) = fp(I)IdI. The
average angular width do (in diameter) of a speckle spot depends on the ex-
pansion W of the light emitting surface and the wavelength [33]: According to
the van Cittert-Zernike theorem, the angular range da within which the light
coming from W is coherent to an amount of A per cent, is equal to the angle
within which the amplitude of the diffraction pattern of a plane wave, emitted
by the same area, has decreased from 1 (maximum) to A. The light coming
from W is supposed to be emitted from independent, quasi-monochromatic
light sources which are equally distributed over the area W. Consequently,
the ‘coherence angle’, i.e. the average width da of the speckle spots which are
produced by a round source, is equal to 1.22A/W, which corresponds to the
first zero of the diffraction pattern of a pinhole. Within a smaller range of
0.32A/W, there is still a coherence of 88 per cent. The speckle spot size is
given by the coherence angle times the distance from the source. For good
speckle correlation measurements it is necessary to choose an angle of obser-
vation smaller than the coherence angle. This is best done with a monomodal
fibre. When the scatterers move, the speckle pattern changes (rapidly) which,
in the path model, is explained by the variation of the path configurations.
In another model (which however is less advantageous experimentally) the

6 We will treat this subject only briefly. A more detailed description is found in [13].
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fluctuations of the intensity of the speckle spots can be explained by a (very
small) Doppler shift induced by the scattering of the moving particles. Conse-
quently, the time-dependent autocorrelation measurements correspond to the
spectroscopic wavelength measurements in Fourier space. In analogy, the time-
of-flight measurements discussed above can also be performed in Fourier space,
i.e. by frequency-dependent intensity correlation measurements of the speckles.
This time, the scatterers do not move and the speckle intensity only changes
due to the frequency shift. Omne obtains for the cross correlation function
(I{w)I(w + Aw)) for the intensity of a speckle spot at the frequencies w and
w + Aw, in an average over many speckle spots and/or sample configurations:

(I (W +Aw)) = (BuE:BuisnBln,) = (1.35)

=2 ([ |ECIEGIECE ) expli o1 o))
) + Aw

(4= 0] expli($sy = izt 93— $s0)] dica ).

LW
X expli

Each amplitude FE is represented by the path .« of a wavelet which has
a probability proportional to |E(«s)|?. The average is taken over all pos-
sible combinations of the four light paths .«;_4. Here, we make the ap-
proximation that the scattering is independent of w in the considered fre-
quency range, i.e. D(w) = constant! The phases ¢., , correspond to pos-
sible phase shifts during the scattering events and to the phase shift intro-
duced by the path from the source to the first and from the last scattering
event to the detector. Averaging over all paths and configurations, i.e. all
phase shifts ¢, ,, (£s1,2) and (222 45,4) results in the fact that the inte-
grand must be multiplied with the following combination of delta functions
0(o1—22)0( 03— 04) + (81— 24)0( 09— 23). In addition we have assumed that
the phase shifts are independent of each other and that the possibility of crossed
paths is negligible. Replacing in addition v by vg, the integral can be reduced

to:

@)+ Aw)) o < p(/é1)p(42)dm,z>+ (1.36)

21,2

. Aw . Aw
+R < p(1)p(02) €xpli — 1] exp[—7 — 9] d/a1,2> :
Vg Vg

21,2

where p(«) is the intensity probability for a photon to travel along a certain
light path .. In the following we assume that correlations between o; and s
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are negligible. With p(.s) =p(ugt), which corresponds to the probability p'(%)
to go from one side of the slab to the other and the relation (1.33), p'(¢) o I(¢),
one obtains:

(I(w)I(w + Aw)) = (I(w))* + ‘/ I(t) exp(i Awt) dt i : (1.37)

This is the relation between the frequency-dependent intensity correlation
function and the absolute value of the Fourier transform of the time-dependent
transmitted intensity I(t). The integration can be performed in analogy with
egs. (1.25-1.29) with the replacement 1/L2 — 1/L2 — iAw/D. For experimen-
tal comparisons between the correlation function and I(t), see [13]|. Of course,
the sample and experimental setup need to be very stable, so that the speckle
pattern does not change during the measuring time for a given frequency.

1.2.3 Diffuse photon-density waves

For the characterization of turbid media, diffuse photon-density waves [34] rep-
resent another, interesting method to study multiple light scattering, especially
if the medium is less turbid. This method is also applicable in backscattering
direction. If an oscillating source like an amplitude-modulated diode laser is
used, the multiply scattered light will also oscillate to some extent. In this
case, the source term S and the solution of the diffusion equation (1.9) can be
separated into a dc- and an ac-part: S(7,t) =0(7)[S4c + Sac €xXp(—iwnt)] and
P(T, ) = pae(T) + Pac(T) exp(—iwmt), wy, being the modulation frequency. For
the ac-part the diffusion equation takes the form of the Helmholtz equation
[35]:

— — Sac
[V? + k?iiff] Pac(T) = 6&(7) D (1.38)
. W, 1 vg [271 1
with Ky = Pome=pl-g] (139

a
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The solution is a highly damped (due to the

diffuse propagation), spherical wave with the Em‘&g
complex wave vector kgsr; Ay is the wave- K2 Xi ,
length of the modulation. The value of kg in diff K
the complex plane is illustrated in the figure e diff
to the right. Without absorption, the real and \P \\
imaginary parts are equal and the wavelength P2 1

]
. N

is Agiff = VA DT,,, T,, being the period of Rg
the modulation. With absorption, this wave-

length as well as the imaginary part increases. Of course, with increasing
absorption, the range of the photon cloud decreases rapidly. The relation
between real and imaginary parts as a function of the modulation frequency,
turbidity and absorption of the sample, determine the frequency and sample
size range which can be explored reasonably. Despite the large damping, these
diffuse photon-density waves have a well defined frequency, amplitude and
phase which can be measured very precisely by lock-in techniques. Examples

of applications can be found in [34].

&~
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1.3 Coherent backscattering of light

When averaging over speckles, the intensity of the light scattered from a multi-
ple scattering sample depends only weakly on the scattering direction ¢: With
increasing angle of observation ¢ (with respect to the normal of the surface)
the probability that the light leaves the sample from a depth h without being
scattered again decreases by exp (7%‘5#) Integration over h gives, to a first
approximation, a cos(1})-dependence of the emitted intensity (called Lambert’s
law"). In addition to this cos(d¥)-dependence, there may be a more or less pro-
nounced (depending on the optical roughness of the surface) diffuse specular
reflection of the incident light. To a first approximation, this reflection has the
same properties with respect to direction and polarization dependence as the
reflection from polished surfaces with the same ‘average’ index of refraction.
However, as outlined in the introduction, a strong deviation from Lambert’s
law occurs in the exact backscattering direction (see fig. 1.3). In this direction
one observes an intensity enhancement by a factor <2. For the following rea-
sons this brighter spot cannot just be a specular reflection or a speckle spot:
i) Its direction does not depend on the orientation of the sample but rather
on the direction of the incident light. ii) When using polarized incident light,
the scattered light of this spot is polarized as well, whereas the surrounding
intensity is mostly depolarized. Moreover, the backscattering peak has the
same polarization as the incident light, especially in the case of circular po-
larization, whereas a reflection would have the opposite circular polarization.
iii) In contrast to a speckle spot, its width is not inversely proportional to the
width of the light emitting area but it is proportional to the optical density
1/ £* of the sample. In the majority of cases, the width of this so-called coher-
ent backscattering cone is smaller than about one degree. In fig. 1.9 coherent
backscattering versus Lambert’s law is again illustrated.

Coherent backscattering has its origin in the constructive interference be-
tween each light path and its reversed path. In the exact backscattering di-
rection (Eout = —Ein) both paths always have exactly the same length. Con-
sequently, due to this symmetry, there is an interference enhancement of the
intensity by a factor of two. For angles deviating slightly from the exact
backscattering direction, the intensity rapidly decreases to the value which is
obtained by the incoherent summation of all light paths. This is illustrated

" The exact ¥-dependence depends on the refraction at the surface, the intensity distri-
bution close to the surface, the surface roughness or on the anisotropy of the scattering,.
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Figure 1.9: Illustration of CB versus
Lambert’s low. A multiple scattering
sample is illuminated by a plane wave
(). The ‘sphere’ represents the an-
gular intensity distribution I(9)xcosd
of the light which is scattered back from
a turbid sample essentially according to
Lambert’s law, ¥ being the angle with
respect to the normal of the surface.
However, in the exact backscattering
direction (6, = 0), one additionally
observes an intensity enhancement
by a factor of <2, 0, being the angle
with respect to the incident light. The
width of the CB-cone is proportional KN
to the optical thickness of the medium and is most often very small. Here, it corre-
sponds to a rather good white paint with £*=2um at A=0.5um.

N

r

and more explicitly explained in fig. 1.10. The reversed path exists if the direct
path leaves the sample inside the coherence area of the light source.

Coherent backscattering is a very general phenomenon in nature every time
multiple scattering of waves takes place. It is a very ‘stable’ effect, since it is
not destroyed by the motion of the scatterers, nor by absorption or a short co-
herence length of the incident light. The latter will be shown in section 1.3.4
where the cone is detected with sunlight. Phenomena that destroy CB in-
clude magneto-optical Faraday rotation [36]-[40] (see section 1.3.4). Of course,
coherent backscattering is also destroyed by non-elastic scattering, e.g. by flu-
orescence or by relativistic moving scatterers [36]. CB is closely related to the
fact that light paths are reversible, i.e. “if I can see you, you can see me”.
However, strictly speaking, this is only completely correct for scalar waves.
For electromagnetic waves, the polarization must also be considered. In fact,
it emphasizes that CB is only completely satisfied for the same incident and
detected polarization state. This follows from the theorem of reciprocity [41],
which states that the scattering matrix of the reversed path is the transposed
matrix of the direct path. We will study the influence of the polarization on
CB in more detail.

The experimental setup used to measure coherent backscattering is rela-
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Figure 1.10: [llustration of the coherent
backscattering effect: CB is the construc-
tive interference between each light path
and its reversed path in the exact backscat-
tering direction, Eout = —Ein. In this di-
rection, both paths have exactly the same
length and the wavelets are in phase. In
directions off exact backscattering a phase
shift of ot -7 — (—Ein)-F is introduced.

tively simple and qualitative and comparative studies of the optical density
are very easy. However, like in all experiments in backscattering geometry,
a quantitative evaluation is more complicated as the problem is not well de-
scribed in the diffusion approximation. On the other hand, the shape of the
cone, especially its dependence on the polarization of the light, not only con-
tains the information of the optical density but also contains some information
on the single scattering. We will only discuss here the ‘physics’ of the shape
of the CB-cone. Quantitative evaluations are easily possible by Monte-Carlo
simulations.

1.3.1 Theory of coherent backscattering

In the first part we will restrict ourselves to multiple scattering of scalar
waves. This approach is sufficient to explain the general shape of the coher-
ent backscattering cone as a function of the optical thickness and absorption.
In the second part, we will consider the vector character of light and discuss
the relationship between coherent backscattering and the polarization of light.
We assume that there are no other interference effects in addition to coherent
backscattering, i.e. that the speckle pattern has been completely averaged out
by the motion of the scatterers and that the medium is completely random,
without any (Bragg) reflections. For most cases, we will divide the ensemble
of possible light paths into classes of paths of a certain length s, irrespective
of their configuration. In section 1.3.2, in the context of Monte-Carlo simula-
tions, this path model will be described in more detail.

Fig. 1.10 shows the situation for a light path with the distance vector 7 be-
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tween starting and end points and the particular associated path where the
sequence of the scattering events is exactly reversed. In the exact backscat-
tering direction these paths interfere constructively. For directions off exact
backscattering, a difference in phase of ¢,-7, with ¢, = Eout — (—Ein),s is intro-
duced between the direct (®) and the reversed (®) light paths. Accordingly,
the intensity of one pair of paths oscillates as a function of the backscattering
angle 6, which is the angle between Eout and —Em- However, the distance 7is a
broadly distributed quantity since .+ is always (much) larger than £*. Thus, at
large angles, as on average over all possible distances 7, the oscillations average
out and the intensity corresponds to the incoherent sum of the contributions
of all paths. The coherent backscattering enhancement (CBE), i.e. the ratio
of the coherent to the non-coherent summation of each pair of light paths, as a
function of @, is given by (for illustration see also fig. 1.11):

|e®+e®|2 — 14+ 2R[ege0]

CBE(G), 7) = -
@) = e leol ~ T el + leo?

=1+ cos(g,7). (1.40)
The complex numbers ep and eo are the amplitudes of the direct and reversed
paths, respectively; (*) denotes the complex conjugate. In the case of scalar
waves, e, and e are equal in absolute values but different in phase, if g, # 0.
If |7] is very small the oscillations become very broad. In fact, for r S\/2n,
CBEFE is no longer distinguishable from Lambert’s law. Normally, the probabil-
ity of such almost closed light paths is negligible with the exception of single

8 Using —Em here instead of +Ein, reflects the fact that CB acts to some extent like a
phase conjugating mirror.

Figure 1.11: Solid gray curves:
Angular dependent oscillations of the
interference pattern for two different
distance vectors r = 2um and 3.5um
(A = 0.5um, q||¥). The width of the
oscillations 1is inversionally propor-
tional to r. All oscillations have their
mazimum at zero degree. At larger IRV RLY R
angles, however, many mazxima and

minima superimpose and by averaging -20 -10 0 [ doe gre 6]1 0 20
over aoll paths, i.e. all possible distances b

7, the CB-cone decreases for angles > \/2m€* to the average intensity. The bold
solid curve corresponds to eq. (1.46) with y=0.7, A=0.5um and £*=1um.
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scattering. For Rayleigh scattering for example, about 25 per cent of the light
is scattered back by single scattering. For larger scatterers, the amount of sin-
gle scattering decreases due to the anisotropy of the scattering. Consequently,
single scattering (of Rayleigh scatterers) does not contribute to the coherent
backscattering cone and reduces the enhancement factor below two. In other
words, CB is a multiple scattering effect which contributes to the structure
factor of the ensemble of the scatterers [42]. Single scattering is only respon-
sible for the form factor but not for the structure factor. In the following we
will denote the single and multiple scattered incoherent intensities by I, and
I, respectively. Thus, the maximum value of the coherent backscattering is
given by:

Ims
CBEquO =1 —+ m =1 —+ Co (141)

Without absorption, the factor C,, which also depends on polarization,
varies between 1 for large Mie spheres and ~0.75 for Rayleigh scattering
and linear polarization. By using the same incident and detected circular
polarization state, single scattering is normally suppressed as it flips one
circular polarization state to the orthogonal one. With absorption, the short
paths and especially single scattering are weighted more such that C, becomes
smaller.

To simplify the situation further,
we will make the following additional
assumptions i) near normal incidence,
ii) 6, and g are very small and iii) the
distance vector 7 lies approximately in

R — 7

the z,y-plane which is perpendicular
to the incident light which propagates
in the z-direction (see fig. 1.12). In
this way, the reversed path is longer
than the direct path by the distance
As = 1y sinb, = 1,0, corresponding
to a phase shift of k,0p1y = qu7uy
(with iiy follows k.0, ~ g, see Ap-
pendix E), where k, is the wave
vector in air. Finally, on average over all distances 7, i.e. integrated over the
radial intensity distribution I(7,,) which is the intensity distribution around

Figure 1.12: Simplified version of
fig. 1.10 by the assumptions i)-iii) (see
text).
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an illuminated, point like spot at r;, =0, one obtains:

— 1 r — - — —
CBE(¢) = 1+ ﬁ/l(rwy) co8(Gp Tay) ATy (1.42)
- Ty~ Ao o
Ing = [IG)diey,  Lo= [1G)di  (143)
Tey™Ao Tey=0

Consequently, the CB-cone is just the Fourier transform of the radial intensity
distribution I(7,). Their widths are inversionally proportional to each other.
I(7,) is obtained by measuring the spatial intensity distribution around an
illuminated, point like spot, whereas CBE(6,) is obtained by measuring the
angular intensity distribution when illuminating with a plane wave.

Within the diffusion approximation (see section 1.1.1), one finds for the
radial intensity distribution I(7,y,s) = ;25 - exp(—3r2, /4 £*). Since the
Fourier transform of this Gaussian is also a Gaussian, one obtains:

o0
CBE(G) =1+0C, / p(a)e 3L 4, (1.44)

£>0
where p(+) is the normalized path length distribution. Obviously, within the
approximations made above, CBE depends only on |/, i.e. it is symmetric by
rotation around Em. According to this, in most cases, we can angle-average the
cone around its maximum value. It will be shown below that this is not quite
correct in the case of linear polarization. The path length distribution p(.+) is
obtained by the image method (see section 1.1.3). Apart from a normalization

factor, one finds:

p(s) o % /Ooodzin /Ooodzout e Fe T x (1.45)
3 B(Z,m — zout)2 B(Z,m + Zout + 27 e*)2
Ans 0* lexp (_ 450 —EPLT 4.0 ’

where z;, and z,,; are the depths of the starting and end points of a light path in
the sample which are assumed to be exponentially distributed. The Gaussian
terms in brackets correspond to the paths and image paths, respectively. With
the approximation that z;, = 2,; = const. = £*, one obtains after integration
over .+ and normalization [43, 44]:

1 — e=2(1+) e
2(1 + ) ﬁ*\/g

CBE(q) = 1+C, (1.46)
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For small values of g this curve can be approximated by
CBE(gs) = (1+C,) — Co(1 + )| 6] £* + Olgs]*. (1.47)

Consequently, the top of the coherent backscattering cone has a triangular
shape with a slope proportional to £*. For the half width of the cone one finds
Aq% ~1/£0" or AH% ~ \/2n £*. This corresponds to the uncertainty principle
(Ag Ar=1) by assuming that the average value of Ar,, is about £*.%
According to eq. (1.44), the shape of the coherent backscattering cone can be
interpreted as a superposition of Gaussian functions which become narrower
the larger the path length .s. At the same time, p(s) decreases'® like .o ~3/2,
i.e. the weight of these Gaussians becomes smaller with increasing .. These
effects combined result in the triangular cusp at ¢, =0. Absorption introduces
a cutoff length £, for the light paths which is added in eq. (1.44) by the factor
exp(—/4,). That is equivalent to the replacement g2 — g2+3/ £*4,. Note that
the normalization factor in eq. (1.45) changes as well, such that [ p(+)ds = 1.
Thus, one obtains for eq. (1.46) with absorption (for y=0.7):

normalization factor
3.40%/3/0%0, 11— 34EVBH/ Ol
1— 6—3.44* 3/8%  3.40% /qg + 3/£*£a )

The normalization factor ensures that CBE, =1+ C, has the same value as

CBE(q,) =~ 1+C, (1.50)

without absorption. Absorption does not lower CB, since the amplitudes of
the direct and reversed paths are equally affected. In other words, absorption
acts on intensities (number of photons) and not on amplitudes of the light field.
Nevertheless, C, may depend on absorption if the relative amount of single to

9 The approximation 2, = Zous = const. = £” is not really necessary as, in fact, eq.
(1.45) can also be integrated directly (hint: After integration over .s, there is a term
exp[—+4/ (21 — 22)?] which must be integrated in 22 from zero to z; and afterwards in 2;
from zero to infinity). The result is:

1+ —e 21

CBE = 146G, 1.48
(@) Tt e a)? (1.48)
1+
= (14Co) = Co(1+ 7)1 -lal + Olas]™ (1.49)

2

However, despite the fact that this result is more correct than eq. (1.46), to our experience,
it fits less well to experiments and simulations than eq. (1.46). Finally, both equations are
valid only in the diffusion approximation.

10 This can be seen by developing eq. (1.45) in s~1, with 2, = 20ue = £
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Figure 1.13: CB-cones accord-
ing to eq. (1.50). Bold solid line:
without absorption. Dashed lines:
With absorption (£*/Lg, = 0.2;0.5;1),
but the incoherent intensity is mnot
corrected for absorption. Conse-
quently, these curves demonstrate
the cutoff of paths longer than about
£, =3L2/0*. Thin solid lines: These
) curves represent the real coherent
q, [rad] backscattering cones, where also the in-

coherent intensity was corrected for absorption (same absorption values as dotted
lines). Despite the rounding of the cone, absorption does not destroy CB, as it acts
on the coherent and incoherent parts in the same way. Here, no single scattering
was assumed.

multiple scattering varies with £,. In analogy to the transmission geometry
(section 1.2), the term 4/3/£*¢, = L;! defines the direct space absorption
length L,. One can show that the curve shapes of a sample with absorption
length L, and a sample of thickness L= L, are quite similar.!' In other words,
paths which go deeper into the sample than about L, do not contribute to
coherent backscattering. The consequence of the cutoff of paths longer than
£, (on average) is, that no Gaussians narrower than about g, =L, contribute
to the coherent backscattering cone in eq. (1.44). Consequently the cone is
rounded off below q,. In fig. 1.13 cones with different absorption lengths are
plotted according to eq. (1.50).

However, as already mentioned in section 1.1, the diffusion approxi-
mation gives only a rough estimation of the real path length distribution
in backscattering direction. In reality, p(+) depends for example on the
type of scattering, especially if it is isotropic or not, the mismatch of the
index of refraction at the surface and the depolarization of the light. The
diffusion approximation is useful for a qualitative understanding of coherent
backscattering. For quantitative evaluations, however, numerical simulations
of Monte-Carlo type (see Appendix C) are much more useful.

11 The cone shape for a slab of thickness L can be calculated by using eq. (1.23) instead
of eq. (1.20).
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In the next part we discuss the effects of the vector character of light on
coherent backscattering. Despite the fact that in exact backscattering direction
the direct and reversed paths have exactly the same length, the existence of a
constructive interference is not evident, as it requires total correlation between
the polarization of the light for the direct and reversed paths, although multiple
scattering depolarizes. In order to describe the multiple scattering of vector
waves, it is useful to introduce a local (right handed) coordinate system for
each scattering event, where the z-axis always points along the direction of
propagation. The transformation of the local coordinate system from the (i-
1)’th scattering event to the next, corresponds to a rotation of the (i-1)’th
scattering plane, which is built up by E'_l and Ei, into the i’th scattering
plane, built up by I_c; and Ei+1. In the far field approximation, i.e. £ > A,
the light amplitude can always be assumed perpendicular to the direction of
propagation k /|k|. Consequently, in these local coordinate systems, each light
path can be described by a 2x2 matrix M which is a product of 2x2 matrices:

M = R,,S...R2SsR;S1, (1.51)

where R; are rotational matrices which fulfill the transformation from one local
coordinate system to the next. The matrices S; describe the single scattering
events. For spherical scatterers, they are diagonal but complex and depend

only on the scattering angles 6; [19]. For Rayleigh scattering they are real and

proportional to ((1) CO(;G ) Therefore, for the reversed path, the matrices

S; for Rayleigh scattering are the same. On the other hand, on the reversed
path, the light experiences the inverse transformations of the local coordinate
systems. Thus, with R™* = RT and ST = S, the total scattering matrix for the
reversed path is Mg = S;R{S,R;...S,RT = M;, which is just the transposed
matrix of the direct path.!? The fact that the scattering matrix for the reversed
path is just the transposed matrix of the direct path is known as the theorem of
reciprocity [41]. Tt follows directly from Maxwell’s equations and is therefore
not restricted to Rayleigh scattering. Consequently, Mg equals Mg as long
as M is symmetric (i.e. MT = M). However, M is not symmetric, in general,
due to the presence of the matrices R, which reflect torsions of the light path
in three-dimensional space. Only for light paths traveling in one plane, the
rotations R are equal in identity and M is symmetric (if the S; are symmetric).
The importance of these particular light paths will be discussed further below.

12 In this notation, the coordinate system on the reversed path is the same as on the direct
path, i.e. on the reversed path, the light propagates opposite to the z-direction!
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Figure 1.14: Theorem of reci-
procity: P polarizer, A analyzer, M
represents a multiple scattering light
path which is passed in direct and
reversed directions. In this configu-
ration, the complex amplitude ey of
the light which passes on the direct
path polarizer 13, sample Mg and
analyzer ff, is equal to the amplitude
eo of the reversed path (A— Mg —
13) P and A can be any polarizer,
i.e. linear, circular etc. Before pass-
ing P and A and after having passed
the sample, the light is depolarized.

The theorem of reciprocity (Mg = M;) is equivalent to the following re-
lationship between the complex amplitudes e, and e, of a given polarization
state on the direct and reversed paths (see fig. 1.14): The amplitudes and
phases of the direct and reversed paths are the same if the incident and de-
tected light is completely polarized in one polarization state and if the incident
polarization of the direct path is identical to the detected polarization of the
reversed path and vice versa. However, the incident and detected polarization
states need not to be the same. The equivalence between this statement and
the theorem of reciprocity can be verified easily by using the polarizer /analyzer

pairs (B, Al=[(9 ), (o)} [(7), (2 [(5), (£) (1), ()], any ma-

trix M =( z Z ) and the general definitions for the correlated amplitudes for

the direct and reversed paths: el =EM®ﬁ, el = ﬁM@E. In other words, the
argument: “if I can see you, you can see me” is strictly speaking correct only
if both observers stand behind a polarizer sheet. In the following we choose
P=A4 ie. el = PMP and el = PMTB. We will denote this case as paral-
lel polarized state (||), independent if the light is, for example, linear (zx) or
circularly (++) polarized.

As a consequence, the considerations made above for coherent backscat-
tering and scalar waves remain applicable as long as the incident and detected
polarization states are the same.

For orthogonal polarization states, however, the theorem of reciprocity does
not provide any particular correlation between the direct and reversed paths,
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and consequently gives no coherent backscattering cone to a first approxima-
tion. Nevertheless, some correlation is possible in the crossed channels as well,
due to the presence of short light paths. This correlation is closely related to
the depolarization of the light. In fact, a relation exists between the height
of the coherent backscattering cone in the crossed polarized channels and the
degree of depolarization of the light. The crossed polarized states are generally
defined as: ey = AMP and es = PMTAL.3 However, in the following we
choose P L A, ie el = P'MP and el = P'MTP. The special cases of
orthogonal linear and orthogonal circular polarization will be denoted by (zy)
and (+—), respectively. The degree of linear and circular polarization, P; and
P., which survives the multiple scattering is defined as:

= _ % It — I
— mc mc , . — mce mce , 1'52
(S - A ooy (1.52)

where I;,,. are the average incoherent scattered intensities which are detected in
the same (||) or orthogonal (L) polarization states, respectively, relative to the
incident light. Normally, a certain polarization state is destroyed exponentially,
i.e. P(») o exp(—~/¥,) where £, is the characteristic average depolarization
length. For Rayleigh scatterers, £, is of the order of £* and becomes a few
£* for large Rayleigh-Gans-Debye scatterers. P also depends on the geometry.
Simulations show that for Rayleigh scattering, P, is even slightly negative in
backscattering geometry.

In the following we will derive a relationship between the coherent backscat-
tering in the crossed polarized states CBE' at g, =0 and the degree of polar-
ization of the multiply scattered light. The complete curve shape of CBE~(g)
is difficult to derive analytically and we will restrict ourselves to simulations.
It is rounded off very strongly as only some degree of polarization persists for
the short paths. The long paths, which are responsible for the cusp of the cone,
are completely decorrelated on the direct and reversed paths with respect to
their polarization. In order to calculate the factor CBE", we have to evaluate
in analogy with eq. (1.40) the expression:

2R[es e2*]

CBEt =14+ _—=2° .
les|” + [ e51

(1.53)

13 The perpendicular polarization state for the direct and reversed path is obtained by a
rotation of 90 degree in direction of propagation, respectively.
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The result is compared to the amount
of the remaining polarization P (after
backscattering), which can be calculated
Il 2

by evaluating the terms IZ”nc = |eg

and I;;, = |es|>. It is important
to note that in the local coordinate
system of the light paths, in backscat-
tering geometry, the laboratory frame
switches from a right- to left-handed
coordinate system. We take this rotation
into account by multiplying M from the left with the matrlx == ( _01 (1)),
corresponding to a reflection. With these notations one obtains for example:
2

- - 1 -1 0 a b 1
o= () () (w0
2
- “ 0 -1 0 a b 1
e =g = (1 (o 1)(c d)(O) =l (159
2
1 1
|2V + e%Y|? = ((1) [M(O)—i-((l))(l[M)T(o) =|b—c]* (1.56)

If the sample is rotated by 90 degrees, the matrix M which represents the
light path within the sample, must be rotated by 90 degrees or, equivalently,
the polarizer and analyzer must be rotated by —90 degrees. In the following,
the different orientations of the sample are symbolized by | for the cases

(1.54,1.55), =1 for a rotation by 90 degrees and < for a rotatlon by 45 degrees.
Jisymbolizes the average over | | and 71, and ) the average over all positions,
i.e. the sample is rotated durlng the measurement. In this way, one finds (see
Appendix B) the following relations between the coherent backscattering cone
in exact backscattering direction and the remaining degree of polarization in

the crossed channels:

CBE;—, = 1+CZ (2?%_@)) —1+c* (I alCe )) (1.57)

1-P, I

mnc

]

ngzay = 14 (PR Ly (P

1—P,() ) )ms. (1.58)

1, is the total, incoherent backscattered intensity; ‘ms’ indicates that only mul-
tiple scattering light paths (in backscattering direction) are taken into consid-

mc
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eration. Obviously, the circular polarization averages over all rotations of the
sample. The parameter C*, which is defined in analogy to eq. (1.41), reflects
the amount of single scattering. The case (zy) suppresses single scattering,
normally.

Egs. (1.57,1.58) can be explained in words as following: The height of the
coherent backscattering cone in the crossed polarized channels is given by the
amount of light which is scattered into the opposite polarization state via a
polarization conserving channel. ‘Polarization conserving channels’ are those
light paths whose matrices (M) have the same eigen-vectors for the direct and
reversed paths. One can show that this is equivalent to the condition that the
eigen-vectors are perpendicular. On the other hand this is equivalent to the
condition that the matrix (IM) is symmetric. As already mentioned above,
if the matrix representing a certain light path is symmetric, the matrices of
the direct and reversed paths are identical and CBE equals two, independent
of the polarization of the incident and detected light. If, however, the matrix
is not completely symmetric, which is normally the case, it can be separated
into a symmetric and an antisymmetric part IM = (EM)* + (EM)*. With eq.
(1.53) and the relations [(EM)*]T = (EM)?, [(EM)?]T = —(IM)?, et = P*MP
and el = PMT P one obtains:

CJ_ |ﬁLMsﬁ|2 _ |ﬁLMaﬁ|2

CBE+ =1+ _ _ _ .
® |PLM*PJ2 + |PLM*P|2

Normally, the symmetry decreases with in-
creasing path length. Therefore, only short
paths contribute to coherent backscattering in
the crossed channels, giving a (small) broad
cone. An example for highly symmetric paths
is shown in the fig. 1.15, assuming large (Mie)
spheres which scatter light in a diagonal
plane on a smooth curve. These light paths <
transfer light from one linear polarization state Figure 1.15

to the orthogonal one as the depolarization by the Mie spheres is relatively
slow. Therefore, CBE* for Mie spheres looks like a four-leafed clover (see fig.
1.21). The weight of such types of paths with respect to the total number of
paths determines if a cone in the crossed channels is visible or not.
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If the sample is symmetric by rotation around the incident wave vector,
egs. (1.57,1.58) reduce to

ij

CBE;-, = 1+C* (I"f’) (1.60)
lI‘O c

CBE™., = 1+(—2 (7;03,”)’)) : (1.61)

For non-polarized light one obtains CBE,,—o =1+ I—,,LI;% (%(1 +P.) + 731)

which is the weighted average value of the cases ‘++’ and ‘+—’ or ‘xx’ and

4 3

xy’.

From these equations a relation between P; and P, can be obtained. Since
CBE*~ and CBE® must be in the interval [0,2] and P, and P, in the interval
[—1,1], we obtain in the case of a rotational invariant sample in the backscat-

tering direction (now single scattering is included as it can be formally added

to CBE):

Pc_l 1_Pc
< < .
5 <Phs—

(1.62)

This relation is shown in the figure to the right.
The point @, for example, corresponds to light
paths which guide the light (as in an ideal
monomodal fibre) without circular depolariza-
tion. A mirror is represented by the point Y.
The point & can be obtained with 3 mirrors as
indicated in the figure, which corresponds to the
matrix M =( _01 _01 ) As in this case P, and
P, are negative, according to eq. (1.60), there
would be a destructive interference in the case

of CBE*. Of course, this type of ‘scatterers’ is very unusual. However, such a
destructive interference of CB was predicted for elastically scattered neutrons
[45], when the neutrons are scattered into the orthogonal spin state.

The theorem of reciprocity is not restricted to paths in backscattering
geometry. Thus, a relation for the polarization in transmission can be also
obtained. In transmission geometry (denoted by ‘¢’), the matrix I must be
replaced by the identity. The vectors ]3, A are the same when calculating the
coherent backscattering enhancement but the complex conjugate when calcu-
lating P* (due to the different position of the circular analyzer). Thus one
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obtains the relation:

i
LEPE e

1 T
P (1.63)
2
which corresponds to the relation in backscattering geometry but reflected at
the P;-axis.

Fig. 1.16 shows the coherent backscattering enhancement for Rayleigh and
Mie-scattering, for the linear parallel (xz), linear crossed (zy), circular (++)
and circular crossed (4+—) polarization states, as well as for non-polarized light.
These data were calculated using radiative transfer theory and verified by nu-
merical simulations. Especially for Rayleigh scattering (ka — 0), CBE** has
a value of 1.7521 (due to single scattering), i.e. smaller than the theoretical
possible value of two. With absorption, the relative importance of single scat-
tering would increase and CBE** would still decrease. The larger the particles,
the more the scattering is anisotropic and forward directed. Consequently, the
amount of single scattering decreases with increasing ka. In the case of circu-
lar polarization (++), single scattering is suppressed as it is comparable to a
reflection in a mirror, which flips one circular polarization state into the other.
Consequently, CBE*" is always two, independent of ka and absorption. In the
case of non-polarized incident and/or detected light, CBE is a few per cent
larger than the average value, due to the fact, that the cases CBE**, CBE**,
CBE*¥ and CBE™*~ are weighted differently, according to their different amount
of incoherent intensities.

Figure 1.16: Coherent
backscattering in the exact
backscattering direction as a
function of the size parameter
; ka (k wave wvector, a radius
of scatterers), for the different
] polarization states:
circular incident as detected
polarization; &1 linear parallel;
O ] orthogonal incident and
detected polarization; + aver-
age value of the four preceding

CBE(g,=0)

same

curves; XX unpolarized light. Relative index of refraction scatterers/surrounding
media m = 1.2. From [47, 71].



38 Multiple scattering of light

1.3.2 Monte-Carlo simulations

Within the diffusion approximation one cannot obtain a satisfying analytic
expression for the path length distribution for short paths. However, it is
possible to simulate most multiple scattering problems, especially coherent
backscattering within a short time (minutes to some hours) on a PC and in-
corporate surface effects, anisotropic scattering and polarization. The basis
of such simulations is the random walk model where light paths are randomly
generated as follows: A new direction after a scattering event is chosen accord-
ing to the probability, given by the differential cross section for the intensity
do(0, ¢) that the light is scattered in a certain direction. The distance Ar
between two scattering events is chosen according to the Beer-Lambert law by
p(Ar) = exp(—Ar/f)/¢. The absolute intensity is renormalized to unity at
each step, i.e. we consider a random walk of photons. Eventually, the light
is absorbed with a probability proportional to exp(—Ar/¢,) or, equivalently,
a certain maximum path length ¢,,.. is chosen for each photon according to
a distribution exp(— smez/%e)- A photon can be reflected at the surface or
a window or leave the sample before being absorbed. The positions of the
scatterers are not monitored corresponding to an incoherent summation of all
light paths. At the end, the number of photons which have left the sample
in transmission or reflection is counted as a function of position, path length,
phase and polarization.

In principle, with this random walk model of particles it is impossible to
obtain interference effects between different paths. However, CB is just the
interference between each light path and its reversed path which, moreover,
are related by the theorem of reciprocity. Thus, the shape of the CB-cone is
essentially the Fourier transform of the intensity distribution I(7) which can be
obtained by the random walk model described above. Therefore, the CB-cone
can be completely simulated by this model, polarization effects included.

There is a very efficient modification of this random walk model which is
called the method of ‘partial photons’ [46] (for more details see Appendix C).
This technique is very well suited to the problem of coherent backscattering.
At each scattering event, the probability is calculated that the light leaves the
sample in the exact backscattering direction. This probability is given by the
probability that the light is scattered in this direction, times the probability
for leaving the sample without being scattered again, times the probability
for not being absorbed. The first probability is given by the differential cross
section, that the light is scattered in this direction. The second and third
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probabilities are given by exp(—z/f)/¢ and exp(—z/£,)/£,, z being the distance
of the scattering event from the surface. Now, instead of counting the number
of photons which have left the sample, these probabilities (at each scattering
event) for leaving the sample are summed. Each light path contributes with
its ‘partial photons’ to the summation until it is absorbed or until it has left
the sample. The result is essentially the same as compared to the ‘classical’
method. Strictly speaking, it is even more correct as only light which leaves
the sample in a very small angular range (as it is the case for CB) is considered.
In any case, the method of partial photons is much faster than the ‘classical’
method.
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1.3.3 Experimental setup of CB

The picture in fig. 1.17 shows an experimental setup used to measure coher-
ent backscattering. The light source is a continuous wave Art-laser with an
output power of up to 0.5 Watt. Less laser power can be used for samples
with higher reflectivity or when using a camera with higher sensitivity or less
angular resolution. The coherence length of the laser is not important (see
also section 1.3.4 and fig. 1.24) while the spatial coherence and homogeneity of
the wave front are essential. The intensity of the laser beam is controlled by a
rotatable A/2-plate and a linear polarizer. This provides a better pointing
and divergence stability as compared to changing the laser power directly. A
second \/2-plate is used to rotate the polarization by 90° in order to detect
the crossed polarization states. The beam expander, necessary to create
a largely extended beam in order to approach a plane wave, is composed of
a microscope objective (focusing the laser beam on a pin-hole) and a second
lens in a telescopic configuration. The laser beam is typically expanded to a
diameter of about 15mm. The semi-transparent mirror is the most impor-
tant element in the setup since it creates most of the experimental artifacts.
Only in the case of very strongly scattering samples with rather large cones
the semi-transparent mirror can be replaced by a small conventional mirror
without too much shadowing of the cone tip. The semi-transparent mirror
should be wedge shaped and relatively thick in order to reduce interference
fringes (due to reflections from the mirrors front and back face). It is advanta-
geous to choose the (linear) polarization of the incident laser beam such that
the (Rayleigh) scattering from defects of this mirror has a minimum in the
direction of the camera. The part of the incident laser light which is deflected
by the semi-transparent mirror must be completely absorbed. We use for this
purpose a black filter oriented at the Brewster angle or a second filter to elim-
inate the reflection coming from the first filter. With the help of an additional
A/4-plate, it is possible to measure the cone in the circular polarized states.
By using a single \/4-plate at this position instead of one in front of the semi-
transparent mirror and another in front of the analyzer, one also circumvents
the problem that the reflectivity of

Figure 1.17: Photo of an experimental setup used to measure coherent backscat-
tering with a CCD-camera (see text). next page —
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a semi-transparent mirror is somewhat-polarization dependent. A single A/4-
plate is sufficient as in the backscattering direction the local coordinate system
is rotated by 180°. The cases CBE*" and CBE™~ are chosen by the correspond-
ing position (parallel or perpendicular) of the linear analyzer. The light which
is scattered back from the sample is half-deflected by the semi-transparent
mirror, passes through a linear polarizer cube and is focused by a lens on the
CCD-camera, situated in the focal plane. The camera, which must have a lin-
ear response, records a two dimensional image of the intensity as a function of
the scattering angle around exact backscattering. Special care must be taken
in order to ensure measurement of the absolute intensity. To this end a dark
reference must be subtracted from the sample measurement and the different
angular regions on the camera must be calibrated by a reference measurement
which shows no coherent backscattering. The thickness of the sample and the
diameter of the illuminated region should be larger than about 10£*. If the
sample is not liquid, the speckle pattern must be averaged out, for example by
rotating the sample. The most effective averaging is obtained by wiggling and
rotating the sample at the same time.' It is also possible to keep the sample
fixed but illuminating it via a wiggling mirror. This procedure does not change
the position of the CB-cone as both the direct and reversed paths to and from
the sample experience the same changes. In fact, for this reason any optical
element between semi-transparent mirror and sample is less critical with re-
spect to optical quality (besides direct reflections by defects) and translation
during the measurement. To some extent coherent backscattering acts like a
phase-conjugating mirror which corrects for defects in the light path.

If the sample is located behind a window, one has to correct for the (multiple)
reflections in the window [48]. These may change p(+) substantially. This
effect may be reduced by using a thicker window or index matching. On the
other hand, one can try to include these effects into simulations or theory.
The position of the sample is of no importance. It can be placed up to several
focal length (of the camera lens) in front of the semi-transparent mirror. This
is a significant advantage of coherent backscattering when used as a remote
sensing technique.

Instead of the camera, a (monomodal) fibre combined with a photomulti-
plier, mounted on a rotational stage, can be used.!> This provides a higher

14 Just translating the sample is less effective, as completely independent speckle patterns
are only obtained for translations larger than the beam diameter.
15 An additional improvement provides an ‘off-centre rotational stage’ [49], where the
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dynamic range and, more important, a larger angular resolution compared
to a standard CCD-camera with 512 x 512 pixels and 256 grey levels. For
Rayleigh scattering, for example, the shape of the CB-cone decreases rela-
tively fast around the maximum but very slowly at the wings. Thus, for very
precise and complete cone shape measurements it becomes necessary to trans-
late the camera or to vary the angular resolution. Nevertheless, only with a
camera relatively fast (in-line) measurements and two-dimensional images in
‘one shot’ are possible.

The position of the camera, as well as the divergence of the expanded laser
beam, are adjusted by using the fact that, to some extent, coherent backscat-
tering acts like a time-reversal mirror (see Appendix D). Two measurements
are necessary: 1) Measuring the coherent backscattering cone and selecting
the position of the camera where CBE is maximum. 2) Replacing the sample
by a mirror and selecting the focal point, again by varying the position of
the camera. If the incident wave is plane parallel on the surface of sample,
then the positions of measurement 1) and 2) will be identical. However, if the
laser beam is divergent, position 1 is shifted forward and position 2 backward
indicating misalignment of the beam expander.

In our experience, by using a fixed camera, values of £*>10um can be
measured (for visible light). By using a rotational stage there is no lower
limit for ¢*. Tt is difficult to estimate the upper detection limit for £*.
The diffraction limit of a laser beam which has a homogeneous intensity
distribution over a diameter d amounts to A\/d=~50urad. Consequently, with
a typical laser beam diameter of about lcm, only values £*<200um can
be measured. In reality, however, the intensity profile of the reflecting area
on the sample is more Gaussian-like and the resolution much better. But a
Gaussian intensity profile reduces the enhancement factor because in this case
the intensity at the beginning and the end point of a random walk may no
longer be identical. Normally, we cut off the beam profile with a diaphragm

whole setup (besides the incoming laser-beam) is rotated about the image point of the
sample with respect to the semi-transparent mirror. At the same time the sample is rotated
in the opposite direction. With this setup the direction and position of the incident light
with respect to the sample is always the same. Also the light path to the detector is not
changed. Consequently, the angle of observation is changed without changing the angle of
the light paths with respect to the different optical elements. Only the angle between the
incident laser beam and the semi-transparent mirror changes. However, the corresponding
change in the reflectivity can be measured and corrected for easily with a detector at the
place of the sample.
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in order to obtain a more or less homogeneous intensity distribution on the
sample, but this is always a compromise. If possible, another diaphragm is
placed directly in front of the sample in order to block light coming back from
the outside of the illuminated region. These light paths would not be followed
in the opposite direction and thus reduce CB. For larger values of £* a good
solution is to use divergent light (see Appendix D). Then, the only limiting
factors are the sample size and the sensitivity of the system, where the stray
light from the semi-transparent mirror and the A/4-plate plays an important
role.

A completely different technique is ‘heterodyne detection’ [50] which, how-
ever, has only been used for very special ‘samples’ composed of a phase screen
in front of a mirror.
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values lie between 1.6 and 1.95.

1.3.4 Examples of CB-cones

In this section, some examples of experimental CB-cones will be discussed
with emphasis on the cone shape. As discussed in section 1.3.1, the slope
near the top of the cone is determined by the long light paths and, conse-
quently, depends only on quantities such as the transport mean free path £*,
the absorption length £, and the boundary conditions describing diffuse light
transport. The wings of the cone, however, depend in addition on the size of
the scatterers and on the polarization. Fig. 1.18 shows CB-cones of different
materials with a cone width varying from about 0.01 to 0.4 degree. This corre-
sponds to values of £* between 0.4mm for snow and 10um for paper. Most of
these cones are rounded off due to absorption or, in the case of paper, due to a
limited sample thickness. Note that cutting off of the long paths by absorption
or a limited sample thickness does not destroy the enhancement factor of two.
Fig. 1.19 shows a very precise measurement from a powder of TiO, particles.
This cone is much wider because of a transport mean free path below 1um.
In this case, the cone shape fits very well to the theory of Akkermans et al.
[43, 44].  Fig. 1.20 shows the CB-cones in the case of Rayleigh scattering
for the different polarization states. The sample is a suspension of colloidal
polystyrene spheres with a diameter of 100nm in water. From Mie-theory one
obtains in this case a ratio £*/£=1.13, quite close to Rayleigh scattering. For
circular polarization the cone has a cylindrical symmetry and a small cone is
found even in the helicity non-preserving channel (+—). The measurements
agree very well with simulations but not with eq. (1.46). The wings of CBE*~
are higher compared to those of CBE™ due to the fact that, on the short
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Figure 1.20: (B-cones of a sample of colloidal polystyrene spheres with o di-
ameter of 100nm in water for various polarizations of incident and detected light;
A=0.5145um, volume fraction 2.9%, refraction index ratio polystyrene/water=1.19.
Comparison with simulations gives a value of £* =185um, compared to a value of
175um obtained from Mie-theory. The incident light is polarized in the y-direction.

paths, more light is scattered in the opposite than in the same circular polar-
ization state. In fact, in the case of Rayleigh scattering the degree of remaining
circular polarization P, is slightly negative. In the case of linear polarization,
the cone shape is elliptical. This asymmetry is a consequence of the doughnut-
like form factor of Rayleigh scattering which results in anisotropic low order
multiple scattering clearly visible in the wings. In contrast, the central part is
isotropic indicating the isotropy of high order scattering.

Fig. 1.21 shows the coherent backscattering cones of relatively large oil
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Figure 1.21: Two di-
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droplets in water corresponding to very large Mie-spheres. While (++) and
(+—) are isotropic, (zz) and (xy) show a two- and four-fold symmetry. The
four-fold symmetry in the case (xy) corresponds to paths which are illustrated
in fig. 1.15. Along this direction, light is scattered into the orthogonal po-
larization states very efficiently. The dark regions in-between (they are even
darker than the average intensity at large angles) indicate that less light is
scattered into the orthogonal polarization states along this direction. In other
words, the scattering does not only depend on the length of a path .« but on
its configuration as well. The radial intensity distribution I(7)*¥ around an il-
luminated spot is no longer rotational invariant for this sample. Consequently,
CBE®¥(g), which is the Fourier transform of I(7)*V, is also not rotational in-
variant. Obviously the weighting of this type of paths is not negligible in the
case of large Mie-spheres where £%/£>>1.

Fig. 1.22 shows the coherent backscattering cone of a stretched plexiglass
sample which becomes strongly turbid under mechanical deformation. In this
case, surprisingly the cone becomes asymmetric even in the case CBE**. This
is because £* becomes different in the z- and y-direction due to structural
inhomogeneities which orient under deformation. The asymmetry is most pro-
nounced when the PMMA just becomes turbid. With increasing deformation,
these inhomogeneities progressively overlap with the result that the overall
anisotropy of the stretched PMMA glass decreases again.

Coherent backscattering of light has been studied over recent years
on many types of strongly scattering complex materials. Examples range
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Figure 1.22: Coherent backscattering cone of stretched plexiglass [51]. Circular
polarization, A = 0.5145um. In this case the optical density, i.e. £* is anisotropic.
The inset shows the anisotropy of £* in the z- and y-directions as a function of
the deformation. Surprisingly, with increasing deformation, the anisotropy becomes
smaller.

from liquid crystals [52], fractals [44], [54]-[56] to rough surfaces [57, 58].
In addition, the influence of a non-linear part in the optical polarizability
has been studied on coherent backscattering [53]. In optically amplifying
materials, the intensity increases with path length and consequently, the cone
shape becomes narrower with increasing gain [59, 60]. This effect can be
described in analogy to absorption but with a ‘negative’ absorption length.
Therefore, in analogy to absorption, the enhancement factor is not changed in
a medium with gain. Moreover, time dependent measurements of the CB-cone
have been performed [61] and the influence of the surface was investigated to
some extent [48, 62]-[64]. Apart from light waves, the CB-cone has also been
measured for acoustic waves [65, 66].

The only effects which possibly destroy optical coherent backscattering are
i) inelastic scattering by relativistically moving scatterers [36] or fluorescence
and ii) magneto-optical Faraday rotation [36, 37]. Faraday rotation (FR) oc-
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curs in case of a (slightly) different index of refraction for the two circular
polarization states of the light which propagates parallel to a magnetic field.
Moreover, the sign of the rotation changes with the direction of propagation
relative to the magnetic field. These opposite phase shifts, Aa = VBAr for
the circular polarization states, provide a rotation of the linear polarization.
V' is the material-specific Verdet constant, B the external magnetic field and
Ar the propagated distance. FR breaks the theorem of reciprocity since, due
to the external magnetic field, the symmetry between the direct and the re-
versed path is broken. In fact, the matrix which describes FR is the same for
the direct and the reversed path and not the transposed one. Consequently,
the matrix M describing a total scattering path, FR included, is a product of
matrices which are the transposed and matrices which are the same for the
direct and the reversed path. Hence My # M;, in general. The influence of
FR on CB can be approximately described as follows: Between two scattering
events, the field-induced phase difference between the direct and the reversed
path segment is 2A«. Consequently, the contribution of this segment to the
coherent backscattering enhancement becomes only 1+cos(2Aa) and not 2. In
a simple model one may assume that these phase shifts are independent from
segment to segment. Consequently, on average over all configurations and ori-
entations, the total decrease in coherent backscattering for a path of length s
becomes: CBE(VB, s )=1+ {cos(2Aa))*/ NE exp[—31.+ £*(2VB)?], where
the second term holds for small values of (VB)2. In analogy to the cut-off scat-
tering vector g, = 1/3/£*{, in the case of absorption (see egs. 1.44 to 1.50),

this corresponds to a cutoff vector 7, =2VB for FR. Thus, like in the case of
absorption, the cone is rounded off according to the substitution ¢; —¢; +¢2,.
However, unlike for absorption, the coherent backscattering enhancement de-
creases because the non-coherent intensity is not changed by FR. Therefore,
the influence of FR on coherent backscattering is given by the un-normalized
curves in fig. 1.13. This model has been verified experimentally [38]-[40] for
samples which are well described by the diffusion approximation. However, the
simplifications made above, concerning the independence of the FR on each
scattering event, are not always correct. In particular, if a single scattering
event does not completely depolarize the light, or - equivalently - if there is co-
herent backscattering in the crossed channels, more subtle effects appear (see
fig. 1.23). With increasing magnetic field, the peak height of the CB-cone is
decreased but also shifted away from the exact backscattering direction. This
shift can be explained by short light paths for which the light is only weakly
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depolarized. For these light paths the FR-induced phase shift and the phase
shift corresponding to a direction of observation 8, # 0 are correlated. Thus
both cancel at a field-dependent value 6, #0 giving rise to a maximum of the
CBE at that particular angle off exact backscattering. In other words, for the
short paths the backscattering vector must rather be replaced by g — @ — @p
and not by ¢ — g3 + ¢2,. But also for the long paths, i.e. in the diffusion
limit, the simple model proposed above is not quite correct due to correlations
between the influence of FR on CB and the scattering. For Rayleigh scattering
we find that, due to this correlations, the influence of FR is two times higher
than expected, i.e. g2, = 2(2VB)? [67].

Can coherent backscattering be seen directly in nature? Can CB be seen
with sunlight? It is interesting to note that the short coherence length of the
sunlight (given by b JAX = 1.5um) does not affect CB, as near the exact
backscattering direction, the direct and reversed paths have essentially the
same length. In fact, the short coherence length of the sunlight only results
in a convolution of wavelength-dependent cones where the wavelength-range
is determined by the detector. Consequently, the enhancement factor is not
influenced by the short coherence length, only the cone shape changes. More
crucial for CB is the size of the coherence area of sunlight as the starting
and end points of the multiple scattered light paths must lie within one co-
herence area [69]. According to the discussion in section 1.2.2 on the speckle
spot size, one can estimate that the coherence of sunlight on earth decreases
to 50% within a diameter of 40um. Consequently, CB can be observed with
sunlight for samples where the light paths essentially leave the sample within
this distance, i.e. £* <40pm. The data in fig. 1.24 are obtained for a sample of
BaS0O4-powder, measured - as usual - with an expanded, parallel laser beam
and - in comparison - with sunlight. This sample has a transport mean free
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path of £ = 5um and consequently coherent backscattering is also observable
with sunlight. However, the ‘sunlight-cone’ is smaller than two and rounded
off as the long paths (which essentially contribute to the top) with starting
and end points belonging to different coherence areas do not contribute to
CB. Another, equivalent point of view is, that the ‘sunlight-cone’ is a super-
position of several cones from independent sources which are spread in 46,
over an angular range corresponding to the divergence of the sunlight. Con-
sequently, the ‘sunlight-cone’ is obtained by a convolution of the ‘laser-cone’
with a function which reflects the angular-dependent intensity distribution of
the sunlight. The crosses in fig. 1.24 are a (rescaled) convolution of the mea-
sured laser-cone with the Gaussian exp[—(6,/0.15)?] corresponding roughly to
the divergence of the sunlight.!® Consequently coherent backscattering can
be seen with sunlight, if £* is small enough. For objects which are further
away from the sun, the divergence of the sunlight is smaller and consequently
£* can be correspondingly larger. In fact, an increased backscattering inten-
sity is observed on Saturn’s rings when sun, earth and Saturn are aligned. It
can be attributed to coherent backscattering as it is created by the sunlight
backscattered from small ice crystals [70]-[72]. The moons of planets which are
further away from the sun than the earth show coherent backscattering as well.
Also the earths moon has an increased surface brightness at full moon [73].
However, so far, it is not clear whether this effect of the earth moon must be
attributed to coherent backscattering or to the so-called corn-field effect. The
corn-field effect originates from the fact that in exact backscattering direction

16 However, the convolution had to be rescaled in the height of the coherent part by a
factor 0.57. Obviously, due to the difficulties in measuring the sunlight cone (large amount
of diffuse light for example), it is much lower than expected.
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no shadows are visible even on very rough surfaces. It can be seen, for example
when looking at a corn-field, around the observers shadow at sun rise or sun
set. This effect depends strongly on the geometry of the surface. Similarly one
can observe enhanced backscattering around one’s own shadow from sunlight
falling on clouds or fog. This so-called Glory effect [17, 18] is mostly known
from observation of the shadow of an airplane on a cloud. Fig. 1.25 shows
backscattering measurements of a model system consisting of submillimeter
size glass beads. As seen in the upper graph, the two dimensional intensity
distribution around the exact backscattering direction strongly depends on po-
larization. CBE®** and CBE*Y are not rotationally symmetric. In analogy to
figs. 1.15 and 1.21, this can be explained by the rotation of the polarization
of the light which travels in the sphere in a diagonal plane. The lower graph
shows the relative intensity distribution of non-polarized light as a function of



Examples 53

the backscattering angle 6,. A series of oscillations can be seen. Of course, the
non-polarized case, which was measured with parallel and convergent light, is
rotationally invariant around exact backscattering direction. This scattering
pattern must be an interference phenomena as the width of the oscillations is
proportional to the wavelength and inversely proportional to the diameter of
the spheres. Although it is tempting to utilize paths such as sketched in the
fig. 1.25, the exact trajectories of light paths which contribute to the Glory are
more complicated and depend on the index of refraction, the polarization of
the incident and detected light, bead size and perfectness of the spheres. The
curves which were obtained with parallel and convergent light are identical
apart from a scaling factor which depends on the divergence of the incident
light. This behavior is typical for CB and will be discussed Appendix D. Due
to the wavelength dependence of the width of the oscillations, the Glory effect
in nature shows coloured rings.

At the end of the preceding passage we tacitly made the transition from
‘real’ multiple scattering to ‘multiple’-scattering in single, large particles. The
angular dependence of the scattered intensity of such particles is given by
their form factor to which however, in backscattering direction, CB always
contributes to some extent. In the case of Figure 25, the glass spheres have
not been perfectly round such that the backscattering pattern can really be
attributed solely to the interference between the light paths in the spheres
and their reversed paths, i.e. to CB. The Glory effect in nature is caused by
perfectly round water droplets such that not only a direct and its reversed
Eght path interfere but all light paths which are rotational symmetric around
Kin-

Obviously, in the general case, there is a continuous transition from single to
multiple scattering and often it is only a question of definition. It is important
to note that if, by definition, single scattering of large particles is not included
into CB, the values of C;* and C*¥ (in analogy to the definition in eq. (41))
may also decrease below 1, because light may be backscattered into these
polarization states already by one single particle (as can be seen for example
in Figure 25). In many cases, single backscattering of larger particles gives a
non-negligible contribution to the coherent backscattering cone. In these cases
the shape of the cone can be considered as a superposition of two cones, one,
which corresponds to the multiple scattering transport mean free path £* and
another, much broader, corresponding to the average size of the large, single
scatterers. One example is the cone for snow in fig. 1.18, which has wings much
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higher than the other cones because of the single backscattering contribution
from individual snow flakes.
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1.4 Appendix A:
Transport mean free path £~

In this appendix we will discuss the length ¢* more precisely. In fact, there
are two definitions in literature for this characteristic length of a random walk.
As long as the step length distribution of the scattering mean free path £ is
exponential (Beer-Lambert), both definitions give the same result. However,
for polymers (which can also be treated by a random walk model), where the
segment length distribution is not exponential, the definitions give different re-
sults. Also Monte-Carlo simulations of light scattering, where the step length
is chosen to be constant, do not give the correct results. The correct definition
of the transport mean free path £* is given via the mean square displacement
as described in section 1.1. Another length in a random walk is the distance
after which the information of the initial direction y

is lost, which corresponds to the distance after T ,:

which the propagation is no longer ballistic and ;. A N
completely diffusive. This ballistic distance I* is =" Eej\‘“
obtained by evaluating the sum: ‘ 1 !

I*= (2 Ar; cos(izoej)) = Ei(cos 6)" = %;039) (1.64)

where Ar; is the length of the i’th scattering event, £ the scattering mean free
path and 6; the scattering angle between two scattering events. (36;) is the
angle of the ¢’th scattering event with respect to A7y (6p =0). The cosine
represents the projection on Ary. On average over all configurations the cosine
of the sum of the angles can be transformed to a power of the averaged cosine
of the scattering angle.

In fact, by assuming that the random walk starts at a depth ¢* inside the
turbid media, we have so far implicitly assumed that I* = £*. With eq. (1.64)
and the definition of £* in section 1.1, we see that this is correct if the path
length distribution for light scattering is exponential. However, for polymers
with a constant segment length one obtains [21, 74]:

1 + (cos ) . 1—{cos®) ¢

but I*=-—— . (L.65)

¢ :e.l—(cose)’ " _n.l-i—(cose) 1 —{cosf)

Precisely speaking, the relation D = vg£*/d (eq. 1.13) is only correct for
an exponential step length distribution. For example in one dimension, for a
constant step length distribution one can easily see that 7 equals —%”UE £*Vp
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and not —vg £*Vp (see section 1.1): At a point 2 with density p(z), from one
moment to the next p(x)/2 particles go to and p(z + Ax)/2 particles come
from the right. With Ax = vgAt follows the statement. Thus, for consistency,
we obtain in the case of a constant step length for the diffusion constant in
one dimension D" = yg £*/2 and not D; = vy L.

We want to finish with a remark upon Rayleigh scattering. Rayleigh scat-
tering is called isotropic although the form factor is not really isotropic but
more ‘doughnut’-like. In fact, the linear polarized coherent backscattering cone
of Rayleigh scatterers is not rotationally invariant and thus not isotropic. How-
ever, in the multiple scattering regime, where the light propagation is diffuse,
Rayleigh scattering is isotropic as (cosf) = 0 and consequently £* = /.

1.5 Appendix B: Proof of eqgs. (1.57,1.58)

In order to prove the relations between coherent backscattering and the re-
maining degree of polarization, the values for |eg|?, |eo|* and 2R[e, €] must
be calculated for the different polarization states and orientations of the sam-
ple. The analyzer/polarizer pairs [ff, ]3] for the different cases were chosen ac-
cording to Table 1.1. The vector (1, —¢) corresponds to a right-hand polarized
wave. For circular polarization the orientation of the sample is of no impor-
tance because this case is rotational invariant in itself. With these choices,
i.e. A=P for the (||)-cone and AL P for the (L)-cone, the analyzer/polarizer

pairs for the direct and reversed paths are identical. With I'M =( _ca d

and the normalization |a|? + |b|*> + |c|® + |d|® = I, = 1, one obtains the terms
in Table 1.2. Obviously, some terms are different for the direct and reversed

i E Q O
ze | (o) (I ICR).()I] (). () | HI(F). ()]
zy [1(7). Gl [Go) (DI H1C7), GO 51(1). (7))
++ vil(5).(5)]
+- %10 (%)

Table 1.1
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|ez®|2 = |eZ®|? |a|? |d? |Ya+b—c—d?|ila—b+c—d?
|ezv|? |c|? B> | tla+b+c+df? | la—b—c+d|?
|e2v|? |62 le> | sla—b—c+d?| 3la+b+c+d?
leg"|* = leg"|? ill@+d) —ib—)*)
les % (les™ 1) il E@—d)—ib+o)?)

Pl a)?—|c? d)2—b)? _ _R(a+b)(ct+d)*] R[(a—b)(c—d)*]

® al?+|c]? | |d|2+b]2 1+ R[ab*)+R[cd*] 1 —R[ab*]—R[cd*]

l al>—[b)? d®>—|c? R{(a—c)(b—d)*] R[(atc)(b+d)*
P@ al2+[82 | |d|2+|c|? 2 —Rac*]—R[bd*] - 5+ Rlac*|[+R[bd*]
Pl( ) (see text) 2(|a|2 — |b|2)

Ppe Rlad* —bc*]+S[ac* +bd*]

® %-i—%[ba*-i—dc*]
pe Rlad* —bc*]+S[ba* +cd*]

© 1+Sac* +bd*]
2R[e2 (e )*| —2R[bc*] Ha+d?*—b+c?
2R[eg (e5 )"l s(la—dP? —[b+c?)

Table 1.2

paths. The assumption that, on average, both directions are identical results
in some of the relations listed further below. Finally, with these expressions,
equations (1.57,1.58) can be verified.

In Table 1.2 also an expression for the linear depolarization P;(:)) of a
rotational invariant sample, i.e. of a rotational invariant matrix M, is indi-
cated. This relation can be easily verified by the fact that in the case of
rotational symmetry all elements in one row of Table 1.2 must be identical.
In this way, also the following relations for a rotationally invariant matrix
are found: (|af?) = (|d|*), {[b]*) = (|c|*), (ab") = —(cd"), (ac”) = —(bd") and
(Rlad* + bc*]) = £{(|a|>*—|b?). The plus/minus sign in the last relation is for
the transmission/backscattering geometry, respectively. The average must be
taken over all possible configurations. From Table 1.2 also other relations
follow, e.g. with 0 < CBE® < 2 follows —(|b|?) < R[bc*] < {|b]?).

One can show that for a succession of n* independent identical scatterers,
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represented by n* independent rotationally invariant matrixes M;, the remain-
ing degree of polarization is given by P.(n*) = (2R[ad*— bc*])™ and Py(n*) =
(2(|a]?2—|b?))™". Again, the average is taken over all possible configurations.
However, in the case P;(n*) the additional relation (ab*) = (ac*) =0 is necessary
which (as can be shown) is equivalent to the condition that the medium has no
optical activity. With n* =/ £* follows for the characteristic depolarization
length for the linear (1) or circular (c) polarization £, = —£*/In[P/,="] (see
also text to eq. (1.52)). Once again we want to note that the matrixes M; are
supposed to be normalized by |a|? + b2 + |¢|* + |[d* = [, = 1.

1.6 Appendix C: Monte-Carlo simulations

The method of partial photons is correct
for the following reason: At each scatter-
ing event the photon is ‘divided’ into a
part df2 which is scattered in the exact
backscattering direction and a part (1 — d2)
which continues the random walk. With
dQ? — 0, the probability for each ‘partial
photon’ to be scattered in the backscattering
direction is the same (to the first order in df2) and consequently only a nor-
malization factor of no importance. The advantage of this method is that each
scattering event, according to its depth z, gives a contribution to the result.
Thus, a number of about ten times less photon trajectories (for isotropic scat-
tering in backscattering geometry) are necessary compared to the ‘classical’
method in order to obtain the same precision. Especially in cases where the
boundary conditions (describing how the light crosses the surface) are com-
plicated, this is an important advantage as these boundary conditions must
only be calculated now and again for the whole light path but not for every
partial photon (again this would only be a non-important constant factor).
The method of partial photons becomes less effective the larger the ratio £*/¢
as only the part of the light path which is less than a distance of about £
away from the surface participates in the summation. Generally, in the case
of anisotropic scattering, a factor of about £*/£ more scattering events must

be to calculated for each light path. This increase in calculation time may be
reduced by approaching the real, anisotropic scattering by isotropic scattering
with the corresponding step length ¢* at any time the light path is deeper



Appendix C 59

in the sample than several length of ¢*. At this depth, the scattering can be
considered completely diffusive.

We conclude this appendix with some technical remarks on the implemen-
tation of the probability distributions. In order to simulate, for example, the
path length distribution p(Ar), one has to find (analytically or numerically)
the ‘characteristic function’ P~!(n) which is the inverse function of the in-
definite integral P = [p(x)dz of the normalized distribution function itself.
P~1(n) gives the correct probability distribution, p(Ar) in this example, if 7 is
a random number between 0 and 1. For the path length distribution one finds:
P~Y(Ar)=—£*1nn. In analogy, the characteristic function for the scattering
can be found. However, this is more complicated normally, as the differential
cross section depends on two, non-independent angles. Another possibility
to choose one or more variables with the right probability distribution cor-
responds more to a trial and error technique: First the variables are chosen
randomly (with the same probability within a certain interval), then the prob-
ability for this combination of variables is calculated and finally the random
number generator decides, according to this calculated probability, whether
this combination of variables is taken or not. The advantage of this method
is that any probability distribution can be simulated, the disadvantage is that
there may be many time-consuming bad trials. Mostly, it is advantageous to
combine both methods and to select the variables in the trial and error method
according to a ‘pre-weighting’ function such that the number of bad trials re-
duces to a minimum. For Rayleigh-Gans-Debye-scattering, for example, the
part containing the matrix of Rayleigh-scattering can be simulated by the trial
and error method; for the rest, which only depends on the scattering angle 6,
the function P~! can be determined numerically. Thus, the random selections
of the angle # are pre-weighted and the number of bad trials reduces to less
than 50%. With a trick, this method can also be applied to Mie-scattering
by decomposing the scattering intensity into the two factors fi(¢, 8) fo(#) with
Fup,6) = | EalPmin(1, 555) + | Bof? min1, 2 and £,(6) = max(|Sil%, 21
E(¢)1,2 are the parts of the incident amplitude parallel and perpendicular to
the scattering plain, S(8); 2 are the elements of the Mie-scattering matrix. The
characteristic function P~! of f, can be found numerically, f; is evaluated by
trial and error.

In order to create the random numbers 7, the quality of implemented C or
Fortran standard random number generators is sufficient as the scatterers are
not located on a lattice but are distributed randomly.
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1.7 Appendix D:
Divergent or convergent light source

For the coherent backscattering
phenomena, the incident light need
not necessarily be a plane wave
[75, 76]. Any light path starting and
ending at the source will interfere
constructively with its reversed path
at the origin of the source. Thus, to
some extent coherent backscattering
acts like a time-reversal mirror. In
the following we will calculate the

cone width for non-parallel light

(see fig. 1.26). Without the lens L1, Figure 1.26: Skeich of an experimental
the phase shift at point z will be setup with divergent incident light. For
6¢ = krz/L + O[r,z]*/L?, which is simplification, the semi-transparent mir-
equal to the phase shift of parallel in-  ror was omitted, therefore only the light
cident light and a lens of focal length  which comes back from the sample ‘sees’
L, corresponding to the ‘classical’ the lens L1.

setup. With lens L1, the point 2’ has

the same phase shift as the point = without lens. The ratio 2’/x is given by

z F

= FTE=D) (1.66)

where we have used the fact that x is the virtual image of 2’. Consequently,
as the resolution at x is proportional to L, the cone width A8 1 at the point 2’
is proportional to Lz'/x:

FL

A< FrT-D)

(1.67)

With this formula, the scaling factor for any lens system can be calculated.
For example, one obtains for the ‘standard’ setup (parallel incident light),
in the case where a lens is put between the semi-transparent mirror and the
sample, that the cone shape will rescale by the same amount as the diameter
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of the incident light spot is changed.!” Note, that the distance D is not totally
constant but fluctuates by about one £*. Therefore, D should be much larger
than £*.

Using divergent or convergent light may be an interesting variation of the
experimental setup in order to choose the appropriate scaling factor. Of course,
the position of the sample is then no longer indifferent.

1.8 Appendix E: Strongly inclined samples
and refraction at the surface

If the sample is strongly inclined with respect
to Ein, or if the coherent backscattering cone is
very large, some assumptions made in section
1.3.1 are no longer correct. In these cases
it is useful to separate the vectors ¢, and 7
in a component parallel to the incident light
(index ‘2’) and the components perpendicular
to Ein, which for simplicity we will put together
in one two-dimensional vector (index ‘zy’).
Note, that %, is now no longer parallel to the surface. With that notation one
obtains:

- ia:y (DY — ko sin eb'q\wy obf:’ 0 koebq\wy 1
= ( ¢ ) = Kour = (=hin) = ( ko(1— cos 6y) ) - ( k02/2 )’ (1.68)

where Guy = Guy/|dzyl, ko is the wave vector in air. The absolute value of the

0
backscattering vector is |gy| = 2k, sin(8;/2) P ko0. Thus one obtains for the

coherent part in eq. (1.40):

cos(@p-T) = COS(oy*Tuy) €OS(q.T2) — SIN(Gy - Tay) SiN(g,73) (1.69)
ia:y 'Fwy = ko sin 9,, (Z]\wy Fwy) ~ k,ﬂb (f]\wy Fwy) (170)
@1, = ko(1—cosfy)r, = k.021,/2, (1.71)

17 For proof: In this case, the source is at the distance L = D—f where f (negative
for concave lens) is the focal length of the supplementary lens between the semi-transparent
mirror and the sample. For the detection system, i.e. for the backscattered light, both lenses
must be added.
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where @, 7, represents the projection of 77, in the scattering plane, built up
by Eout and —Em- Consequently, the cone becomes broader in the direction of
the inclination as r;, <r. It also becomes asymmetric due to the sine terms
which do not average out as 7, and r, are correlated and have always the same
sign. Thus, one obtains a modified eq. (1.46) for the cone in the direction of
the inclination:

1— e—2(sin Bzt+y) Z*\/ (g sin Bz+q- cos Bz )?

2(sin B, +7) £/ (go sin B + g cos B,)? ’
N——

reduced pene-
tration depth

CBE(gy) = 1+ Co (1.72)

where ¢, and ¢, are given by eq. (1.68). The fact that the random walk starts
at a reduced depth was also taken into account.!® Note that in the y-direction
the cone shape is more or less unchanged although the penetration depth has
changed. According to eq. (1.72), for small angles ., i.e. strong inclination,
the cone becomes broader, asymmetric and there is a second maximum at the
angle 23,. This second maximum, however, points into the sample. Moreover,
it is more or less averaged out, as the vectors 7~ and thus the angle § fluctuate
around the exact direction parallel to the surface. In addition, depending on
the type of scatterers, it is not evident that the theorem of reciprocity is still
valid in directions which differ strongly from the exact backscattering direction.

Due to the mismatch of the index of refraction at the surface, light
is refracted when penetrating into and out of the sample (in addi-
tion, there are total internal reflections which may change p(») sig-
nificantly, see section 1.3.4). The gy-vector used in the formulas for
CBE, is the wave vector in air. Of course, the light is refracted
when crossing the interface sample/air and consequently, the corresponding

18 In reality, the dependence of p(.s) on the angle # may be more complicated.
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backscattering angle in the sample is smaller by
the value of the index of refraction (assuming
more or less normal incidence) than outside
of the sample; but the wavelength is reduced
by the same factor such that ¢, is unchanged.
However, if the sample is strongly inclined,
there is an additional deformation due to
refraction. From Fresnel laws the following
relation follows between the width d@s; of
the cone inside the sample and outside the
sample df;:

Ng 8in Gy
dpy = ——
ny sin Gy

where n; and n, are the corresponding indices of refraction. Consequently, due
to refraction, the cone is wider'® by a factor sin 3,/ sin 3 in direction of the
inclination as opposed to perpendicular to it. Investigations in this direction
may be useful for a better understanding of the influence of the interface on
the light propagation in strongly multiple scattering samples.

19 In addition to the deformation calculated above. The factor ns/n; is compensated for
by the difference in the wavelength inside and outside the sample.



64

Multiple scattering of light



Bibliography

[1] Schuster, A.; Radiation through a foggy atmosphere; Astrophys. J. 21, 1
(1905)

[2] Schwarzschild, K.; Uber das Gleichgewicht der Sonnenatmosphaere;
Nachrichten der Koéniglichen Gesellschaft der Wissenschaften zu Gottin-
gen, Mathematisch-physikalische Klasse, 41 (1906)

[3] P. M. Morse, H. Feshbach; Methods of Theoretical Physics, McGraw-Hill
Book Company, New York, (1953)

[4] Dainty, J.C.; Laser Speckle and Related Phenomena; Topics in Applied
Physics 9, Springer-Verlag, Heidelberg, (1984)

[5] Weitz, D.A.; Pine, D.J.; Dynamic Light Scattering; edited by Brown W.,
Clarendon Press, Oxford (1993) 652-720

[6] Bergmann, G.; Weak localization in thin films. A time-of-flight experiment
with conduction electrons; Phys. Rep. 107, 1 (1984) 1-58

[7] Adams, P.W.; Paalanen, M.A; Localization in a Nondegenerate Two-
Dimensional Electron Gas; Phys. Rev. Lett. 58, 20 (1987) 2106-2109

[8] Anderson, P.W.; Absence of Diffusion in Certain Random Lattices, Phys.
Rev. 109, (1958) 1492

[9] Anderson, P.W.; The question of classical localization. A theory of white
paint?; Philosophical Magazine B 52, 3 (1985) 505-509

[10] Wiersma, D.S.; Bartolini, P.; Lagendijk, A.; Righini, R.; Localization of
light in a disordered medium.; Nature 390, 6661 (1997) 671-673

[11] Scheffold, F.; Lenke, R.; Tweer, R. and Maret, G.; Localization or classical
diffusion of light?, Nature 398, 207

65



66 Multiple scattering of light

[12] Sheng, P. (editor); Scattering and Localization of Classical Waves in Ran-
dom Media, World Scientific, Singapore (1990)

[13] Genack, A.Z.; Fluctuations, Correlation and Average Transport of Elec-
tromagnetic Radiation in Random Media, in [12]

[14] Sheng, P.; Introduction to Wave Scattering, Localization, and Mesoscopic
Phenomena, Academic Press, San Diego (1995)

[15] van Albada, M.P.; Lagendijk, A.; Observation of Weak Localization of
Light in a Random Medium; Phys. Rev. Lett. 55, 24 (1985) 2692-2695

[16] Wolf, P-E.; Maret, G.; Weak Localization and Coherent Backscattering of
photons in Disordered Media; Phys. Rev. Lett. 55, 24 (1985) 2696-2699

[17] Bryant, H.C.; Nelson J.; The Glory; Scientific American, (July 1974) 60-
71

[18] Mack, U.; Lenke, R.; Maret, G,; Comparison between ‘The Glory’ and
Coherent Backscattering of Light in Random Media; submitted to Phys.
Rev. E

[19] van de Hulst, H.C.; Light Scattering by Small Particles, Dover Publica-
tions, New York, (1957)

[20] Fraden, S.; Maret G.; Multiple Light Scattering from Concentrated, Inter-
acting Particles; Phys. Rev. Lett. 65 4, (1990) 512-515

[21] Doi,M.; Edwards, S.F.; The Theory of Polymer Dynamics, Clarendon
Press, Oxford (1989)

[22] Ishimaru, A.; Wave Propagation and Scattering in Random Media, Aca-
demic Press Inc., San Diego, (1978)

[23] Chandrasekhar, S.; Radiative Transfer; Dover Publications Inc., New York
(1960)

[24] Amic, E.; Luck, J.M.; Nieuwenhuizen, T.M.; Multiple Rayleigh scattering
of electromagnetic waves, J. Phys. I France 7, 3 (1997) 445-483

[25] de Bruijn, N.G.; Asymptotical methods in analysis; North-Holland Pub-
lishing Co., Amsterdam (1961)



Bibliography 67

[26] Bronstein, I.N.; Semendjajew, K.A.; Taschenbuch der Mathematik;

[27] van Albada, M.P.; van Tiggelen, B.A.; Lagendijk, A.; Tip, A.; Speed of
Propagation of Classical Waves in Strongly Scattering Media; Phys. Rev.
Lett. 66, 24 (1991) 3132-3135

[28] van Tiggelen, B.A.; Lagendijk, A.; van Albada, M.P.; Tip, A.; Speed of
light in random media; Phys. Rev. B 45, 21 (1992) 12233-12243

[29] van Tiggelen, B.A.; Lagendijk, A.; Rigorous treatment of the speed of
diffusing classical waves; Europhys. Lett. 23, 5 (1993) 311-316

[30] Busch, K.; Soukoulis, C.M.; Transport Properties of Random Media: A
New Effective Medium Theory; Phys. Rev. Lett. 75, 19 (1995) 3442-3445

[31] Schriemer, H.P.;Cowan, M.L.; Page, J.H.; Sheng, P.; Liu, Z.; Weitz, D.A.;
Energy Velocity of Diffusing Waves in Strongly Scattering Media; Phys.
Rev. Lett. 79, 17 (1997) 3166-3169

[32] Applications of MCP-PMT’s to Time Correlated Single Photon Counting
and Related Procedures; HAMAMATSU No. ET-03

[33] Born, M.; Wolf, E.; Principles of Optics, Pergamon Press (1959)

[34] Yodh, A; Chance, B.; Spectroscopy and Imaging with Diffusing Light,
Physics Today, March 1995

[35] Jackson, J.D.; Classical Electrodynamics, John Wiley & Sons, New York,
(1962)

[36] Golubentsev, A.A.; Suppression of interference effects in multiple scatter-
ing of light; Sov. Phys. JETP 59, 1 (1984) 26-32

[37] MacKintosh, F.C.; John, S.; Coherent backscattering of light in the pres-
ence of time-reversal-noninvariant and parity-nonconserving media; Phys.
Rev. B 37, 4 (1988) 1884-1897

[38] Erbacher, F.A.; Lenke, R.; Maret, G.; Multiple light scattering in
magneto-optically active media; Europhys. Lett. 21, 5 (1993) 551-556

[39] Lenke, R.; Maret, G.; Affecting weak light localization by strong magnetic
fields; Phys. Scr. T49B, (1993) 605-609



68 Multiple scattering of light

[40] Lenke, R.; Maret, G.; Destruction of Optical Coherent Backscattering by
Magnetic Faraday Rotation; OSA Proceedings on Advances in Optical
Imaging and Photon Migration 21, R.R. Alfano (ed.), Optical Society of
America (1994) 16-19

[41] Saxon, D.S.; Tensor Scattering Matriz for the Electromagnetic Field,
Phys. Rev. 100, 6 (1955) 1771-1775

[42] Mishchenko, M.I.; Coherent backscattering by two-sphere clusters; Optics
Lett. 21, 9 (1996) 623-625

[43] Wolf, P.E.; Maret, G.; Akkermans, E.; Maynard, R.; Optical coherent
backscattering by random media: an experimental study; J. Phys. France
49, 1 (1988) 63-75

[44] Akkermans, E.; Wolf, P.E.; Maynard, R.; Maret, G.; Theoretical study of
the coherent backscattering of light by disordered media; J. Phys. France
49, 1 (1988) 77-98

[45] Igarashi, J.; Coherent backscattering of neutrons; Phys. Rev. B 35, 16
(1987) 8894-8897

[46] Heiderich, A.; Diffusion Multiple en milieu non linéaire ou anisotrope,
Thesis, Université Joseph Fourier-Grenoble I, France (1995)

[47] Mishchenko, M.1.; Enhanced backscattering of polarized light from discrete
random media: calculations in exactly the backscattering direction; J. Opt.
Soc. Am. A 9, 6 (1992) 978-982

[48] Ospeck, M.; Fraden, S.; Influence of reflecting boundaries and finite in-
terfacial thickness on the coherent backscattering cone; Phys. Rev. E 49,
5 pt.B (1994) 4578-4589

[49] Wiersma, D.S.; van Albada, M.P.; Lagendijk, A.; An accurate technique
to record the angular distribution of backscattered light; Rev. Sci. Instrum.
66, 12 (1995) 5473-5476

[50] Pitter, M.; Jakeman, E.; Harris, M.; Heterodyne detection of enhanced
backscatter; Optics Lett. 22, 6 (1997) 393-395



Bibliography 69

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Schirrer, R.; Lenke, R.; Boudouaz, J.; Study of mechanical damage in
rubber-toughened poly(methylmethacrylate) by single and multiple scatter-
ing of light; Polymer Engineering and Science 37, 10 (1997) 1748-1760

Vithana, HK.M.; Asfaw, L.; Johnson, D.L.; Coherent Backscattering of
Light in a Nematic Liquid Crystal; Phys. Rev. Lett. 70, 23 (1993) 3561-
3564

Heiderich, A.; Maynard, R.; van Tiggelen, B.A.; Coherent backscattering
in nonlinear media; Optics Communications 115, 3-4 (1995) 392-400

Dogariu, A.; Uozumi, J.; Asakura, T.; Enhancement of backscattered in-
tensity from fractal aggregates; Waves in Random Media 2 (1992) 259-263

Dogariu, A.; Uozumi, J.; Asakura, T.; Enhancement Factor in the Light
Backscattered by Fractal Aggregated Media; Optical Review 3, 2 (1996)
71-82

Ishii, K.; Iwai, T.; Asakura, T.; Polarization properties of the enhanced
backscattering of light from the fractal aggregate of particles; Optical Re-
view 4, 6 (1997) 643-647

Maradudin, A.A.; Nieto-Vesperinas, M.; Thorsos, E.I.; Enhanced
backscattering of light from randomly rough surfaces and related phenom-
ena II. Two-dimensional surfaces and localization of surface plasmon po-
laritons; Comments on Condensed Matter Physics 17, 2 (1994) 59-78

Maradudin, A.A.; Nieto-Vesperinas, M.; Thorsos, E.I.; Enhanced
backscattering of light from randomly rough surfaces and related phenom-
ena. I. One-dimensional surfaces and angular correlation functions of
scattered fields; Comments on Condensed Matter Physics 17, 1 (1994)
13-37

Wiersma, D.S.; van Albada, M.P.; Lagendijk, A.; Coherent Backscattering
of Light from Amplifying Random Media; Phys. Rev. Lett. 75, 9 (1995)
1739-1742

de Oliveira, P.C.; Perkins, A.E.; Lawandy, N.M.; Coherent backscattering
from high-gain scattering media; Optics Letters 21, 20 (1996) 1685-1687



70

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Multiple scattering of light

Vreeker, R.; Van Albada, M.P.; Sprik, R.; Lagendijk, A.; Femtosecond
time-resolved measurements of weak localization of light; Phys. Lett. A
132, 1 (1988) 51-54

Lagendijk, A.; Vreeker, R.; De Vries, P.; Influence of internal reflection
on diffusive transport in strongly scattering media; Phys. Lett. A 136, 1-2
(1989) 81-88

Saulnier, P.M.; Watson, G.H.; Role of surface reflectivity in coherent
backscattering measurements; Optics Lett. 17, 13 (1992) 946-948

den Outer, P.N.; Lagendijk, A.; Influence of the refractive index contrast
on coherent backscattering Optics Communications, 103, 3-4 (1993) 169-
173

Bayer, G.; Niederdrank, T.; Weak localization of acoustic waves in
strongly scattering media; Phys. Rev. Lett. 70, 25 (1993) 3884-3887

Tourin, A.; Derode, A.; Roux, P.; van Tiggelen, B.A.; Fink, M.; Time-
Dependent Coherent Backscattering of Acoustic Waves; Phys. Rev. Lett.
79, 19 (1997) 3637-3639

Lenke, R.; Maret, G,; Destruction of Coherent backscattering of Light by
Magneto-Optical Faraday Rotation; to be published

Lehner, R; Lenke, R.; Maret, G,; Influence of Magneto-Optical Faraday
Rotation on Coherent backscattering in the case of Mie-Scattering; to be
published

Okamoto, T.; Asakura, T.; Enhanced backscattering of partially coherent
light; Optics Lett. 21, 6 (1996) 369-371

Mishchenko, M.1.; On the nature of the polarization opposition effect ex-
hibited by Saturn’s rings; Astrophysical Journal 411, 1 (1993) 351-361

Mishchenko, M.1.; Diffuse and coherent backscattering by discrete random
media. I. Radar reflectivity, polarization ratios, and enhancement factors
for a half-space of polydisperse, nonabsorbing and absorbing spherical par-
ticles; J. Quant. Spectrosc. Radiat. Transfer 56, 5 (1996) 673-702



Bibliography 71

[72] Rosenbush, V.K.; Avramchuk, V.V.; Rosenbush, E.; Mishchenko, M.I;
Polarization properties of the Galilean satellites of Jupiter: observations
and preliminary analysis; Astrophys. J. 487, 1, pt.1 (1997) 402-414

[73] Hapke, B.W.; Nelson, R.M.; Smythe, W.D.; The Opposition Effect of the
Moon: The Contribution of Coherent Backscatter; Science 260, (1993)
509-511

[74] A. Heiderich, A. S. Martinez, R. Maynard, B. A. van Tiggelen, The role
of step length distribution in wave-diffusion, Phys. Let. A 185, (1994) 110

[75] Dogariu, A.; Boreman, G.D.; Enhanced backscattering in a converging-
beam configuration; Optics Lett. 21, 21 (1996) 1718-1720

[76] Lenke, R.; Maret G.; Coherent backscattering of light in multiple scattering
media; Progr Colloid Polym Sci 104, (1997) 126-128



