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Strain Hardening of Fractal Colloidal Gels
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We report on experiments on the rheology of gels formed by diffusion-limited aggregation
neutrally buoyant colloidal particles. These gels form very weak solids, with the elastic modulus,G0svd,
larger than the loss modulus,G00svd, and with bothG0svd and G00svd exhibiting only a very weak
frequency dependence. Upon small but finite strainsg , 0.45 the elastic modulus increases roughly
exponentially withg2. We explain the observed strain hardening with the highly nonlinear elas
response of the rigid backbone of the gel to elongational deformation. [S0031-9007(98)08309-4]

PACS numbers: 81.40.Jj, 82.70.Dd, 82.70.Gg, 83.50.Gd
nt
el-
s
i-
ng
lly

ea-
-
h
nd-
ls
of

stic
w

al
o
ey
ll
of

g
cts
ly

tion
re
s,

ttle

us
e

i-
en
Colloidal particles aggregating by attractive interaction
form highly disordered clusters; these structures are,
average, self-similar, and the mass of a cluster,M, scales
with its radius,R, asMsRd , M0sRyaddf , wherea is the
size of the colloidal monomer andM0 is its mass [1]. The
fractal mass exponentdf characterizes the ramification
of the cluster and varies betweendf ­ 2.1 for reaction-
limited cluster aggregation anddf ­ 1.8 for diffusion-
limited cluster aggregation (DLCA) [2]. In the latter
case the distribution of cluster sizes is fairly narro
and the characteristic cluster size grows linearly wi
time. Aggregation of clusters eventually leads to a spac
filling structure which is no longer fractal on all length
scales but which can instead show long-range correlatio
as revealed by a scattering peak corresponding to
characteristic cluster sizeRc ­ aw1ysdf23d, wherew is the
initial volume fraction of monomer particles [3,4]. The
clusters themselves are close packed, forming a ramifi
tenuous gel structure. This structure should be an ela
material with unique properties, which are determine
not only by df, but also by the connectivity or chemica
dimension, db, which characterizes the scaling of th
contour length within the cluster. The elasticity of suc
a tenuous structure can be expected to be extrem
weak; however, it should increase dramatically wit
increasingw. Since the backbone of the gel is contorte
a shear strain will be accommodated by a lengtheni
of the backbone, stretching out the inherent bends. T
should lead to highly unusual elastic properties; th
stretching of the backbone will increase its rigidity an
thus the gel can be expected to exhibit pronounced str
hardening, becoming increasingly stiffer as it is stretche
until it catastrophically breaks. However, because
the very weak elasticity and the difficulty of working
with completely unsheared, virgin gels, this interestin
behavior has never been observed.

By contrast, strain hardening has been observed in ot
types of gels; rubbers and swollen polymer gels exhib
strain hardening when they are stretched enough that
chains are no longer described by Gaussian statistics [5
0031-9007y99y82(5)y1064(4)$15.00
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Strain hardening also occurs in a completely differe
class of materials, semiflexible biopolymers such as c
lulose [7], F-actin [8], and vimentin [9]. Such polymer
are responsible for the mechanical stability of biolog
cal tissues; however, the origin of the strain hardeni
in these systems remains obscure. Although structura
different, colloidal aggregate gels share an essential f
ture with biopolymer networks: locally they each con
sist of segments with significant bending rigidity, whic
dominates their elastic properties. Thus, an understa
ing of the elasticity and strain hardening of colloidal ge
may also provide important insight into the properties
these biopolymer networks.

In this paper, we present measurements of the ela
properties of virgin colloidal aggregate gels. We sho
that their very weak elasticity increases asw3.2, in
agreement with theoretical expectations for a fract
network. In addition, we also show that the gels d
indeed exhibit a pronounced strain hardening before th
catastrophically break. Surprisingly, the data can a
be scaled onto a single master curve, independent
w. We quantitatively account for this strain hardenin
and the observed scaling using a model that predi
the nonlinear stress response of a network of random
oriented backbones of connected clusters.

We use polystyrene latex particles with diameter2a ­
19 nm in a neutrally buoyant mixture of H2O and D2O
[3,10] at 25 ±C; adjusting the density of the solvent to
the particle density is necessary to suppress sedimenta
which leads to either compactification of clusters and mo
rigid structures (work hardening), or, at larger stresse
breakage of bonds before clusters touch each other (bri
regime) [11]. We initiate aggregation by adding MgCl2
to a concentration of6 mM; with initial volume frac-
tions 4.6 3 1023 # w # 1.58 3 1022, gels form within
several hours, leading to macroscopically homogeneo
structures. Static light scattering [4,10,12] from thes
gels at lowerw confirms df , 1.9, slightly above the
value expected for DLCA, and consistent with the in
tial aggregation being in the intermediate regime betwe
© 1999 The American Physical Society
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diffusion- and reaction-limited cluster aggregation; w
note, however, that diffusion still dominates at longe
times, leading to a well-defined average cluster size.

We measure the linear storage and loss moduliG0 and
G00 with a controlled-strain rheometer in an oscillator
shear experiment using a double-wall Couette geomet
The gels are allowed to fully form in the rheometer cel
ensuring that we measure the properties of the undisturb
gel. Typical frequency-dependent moduliG0 and G00

are shown in Fig. 1, for a gel withw ­ 8.9 3 1023,
and using a strain amplitudeg ­ 8 3 1023; reducingg

yielded the same values ofG0svd andG00svd, confirming
linearity. The storage modulus is about an order
magnitude larger than the loss modulus and is on
very weakly dependent on frequency; this is consiste
with the formation of a solid gel structure. The los
modulus is also nearly independent of frequency, exce
at the very lowest frequencies probed, where a sm
increase indicates persistent loss mechanisms presuma
indicative of very slow rearrangements within the gel; w
emphasize, however, that these rearrangements occur
time scale that is many orders of magnitude slower th
the measurement time.

The dependence ofG0 on w is shown in Fig. 2. We
find a power-law scalingG0swd , wn, comparable with
measurements of the compactive strength [13]. The ma
nitude of the modulus reflects the fact that the elasticity
governed by the intrinsic stiffness of the colloidal aggre
gate network. By contrast, a polymer gel, whose elastic
is entropic in origin, would haveG0 , NkBT , whereN
is the cross-link density; sinceN ­ 1yR3

c , these colloidal
gels have a modulus that is roughly 4 orders of magnitu
larger than an equivalent entropic gel. To account f
the observedw dependence, we assume that the mod
lus is determined by the spring constant of the backbo

FIG. 1. Linear storage modulusG0svd sdd and loss modulus
G00svd sjd as a function of angular frequencyv at volume
fraction w ­ 8.9 3 1023 after full gelation of clusters. The
strain amplitude of the oscillatory shear wasg ­ 8 3 1023.
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of the average cluster. The spring constant of a fracta
size dependent, and is given byksRd ­ k0sRyad2s21dbd

[14], where k0 is the bending constant of an elemen
tary bond. This expression reflects the fact that t
extension of a fractal cluster occurs through the unben
ing of the contorted path of the chain; thus the sprin
constant decreases as the cluster size increases and
tortions become easier to unbend. The spring const
depends inversely on the cross-sectional area of the cha
assumed to beR2, and inversely on the longitudinal chemi
cal length, which is proportional toRdb . The elastic modu-
lus of the gel is thenG0 ­ ksRcdyRc, yielding an exponent
of n ­ s3 1 dbdys3 2 dfd [15]. Experimentally, we find
n ­ 3.2 6 0.3; given the sensitivity ofn to df, this is
in excellent agreement with the predicted value, which
between 3.4 and 4.1 fordf between 1.8 and 2, and using
db ­ 1.1, obtained from computer simulations [16]. In
addition, at the lowest volume fractions, the magnitud
of G0 agrees very well with the value determined from
dynamic light scattering [10].

The fractal structure and connectivity suggests anoth
important consequence for the elastic properties of t
gel; as the network is strained, and the inherent ben
are removed, we expect a rapidincrease in the elastic
modulus with increasing strain. We test for this using
series of gels of differentw by measuring the dependenc
of G0 andG00 on the maximum straing of an oscillatory
measurement at a fixed frequency of10 radys. As shown
in Fig. 3, we observe a linear response forg , 0.1, where
both G0 and G00 are independent ofg. Further increase
in strain amplitude results in a very rapid increase
G0 and G00, up to g ø 0.45 above which both moduli
drop precipitously; larger strains are no longer recoverab
indicating irreversible breakage of bonds between cluste
The behavior of these gels is in strong contrast to t
marked shear thinning observed in weakly flocculate
suspensions where bothG0 andG00 decrease above a yield
strain which is strongly dependent onw [17].

To account for the strain hardening, we consider t
effects of a large strain on a single, stress-bearing s
ment of the network and average the contributions fro
randomly oriented segments. In a randomly connect
network, shear stress is accommodated by a longitu
nal stretching of the strands that form the backbone.
large longitudinal strain,l, stretches an individual strand
pulling out the bends that govern its elasticity, and ma
ing it anisotropic in shape by increasing its length whi
decreasing its width. This drastically modifies its ela
tic constant, which is now characterized in terms of th
new width,j. Expressing the strain asl ­ gjyRc, where
g ­ sRcyjddb is the number of blobs of sizej, the new
width is j ­ Rcl1ys12dbd. Then, the spring constant of
the extended strand is given by that ofg springs in a
series, yieldingkslRcd ­ k0sRcyad2s21dbdl2ysdb21d. This
spring constant is very sensitive to the strain,l, for typical
values ofdb , which are close to unity [16]. The force
1065
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FIG. 2. Elastic modulusG0 of gelled polystyrene latex as a
function of volume fractionw of primary particles, measured
at small strain amplitudes8 3 1024 # g # 8 3 1023. The
scaling G0 , wn (full line), with an exponentn ø 3.2, is
consistent with the predictionn ­ s3 1 dbdys3 2 dfd ­ 3.73
using df ­ 1.9 and a value for the backbone dimensiondb ­
1.1 for diffusion-limited aggregation.

required to stretch a backbone segment by a factorl is

fsld ­ k0asRcyad212db flA 2 1g , (1)

whereA ­ s1 1 dbdysdb 2 1d.
The strain dependence of this force leads to the stra

hardening of the modulus. To calculate this, we assum
that the deformation is affine, characterized by the defo
mation tensorL. Backbone strands are then both stretche
and rotated byL, and the magnitude ofl for any chain de-
pends on its orientationn with respect to the principal axes
of the deformation tensor,l ­ jLnj. The force along a
strand isfsjLnjdLnyjLnj, from which the total stress is
calculated as

s ­
1

R2
c

Z
d2r Ln

Ln
jLnj

fsjLnjd , (2)

where we have assumed a uniform distribution of stran
orientations. Whendb ø 1, extensional stresses dominate
over contributions from compression and rotation; th
force along a directionLn may then be approximated as
nfsjLnjd, resulting in

sxy ­
1

R2
c

ZZ
sinu du df sin2u sin2f fssslsu, fdddd .

(3)

In the case of a simple shear along thex axis with
a strain g the extension ratio islsu, fd ­ s1 1

g sin2u sin2f 1 g2 sin2u cos2fd1y2 and the force
becomes

fsld ­ Lf1 1 g sin2u sin2f

1 g2 sin2u cos2fgAy2 2 L , (4)
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FIG. 3. Elastic modulusG0 as a function of the strain
amplitudeg in an oscillatory shear experiment. The volum
fractions are w ­ 9.7 3 1023sdd, w ­ 7.8 3 1023sjd,
w ­ 6.4 3 1023srd, w ­ 5.5 3 1023smd, and w ­
4.6 3 1023s.d. The excitation frequency is10 radys.
Strains beyondg ø 0.45 result in (irreversible) breakage o
the backbone.

, L exp

∑
Ag

2
sin2u sin2f 1

Ag2

2
sin2u cos2f

i
2 L ,

(5)

whereL ­ k0asRcyad212db . For large values ofA sdb ø
1d, there is a regime where terms quadratic ing2 are
small. We neglect the quadratic term, integrate over
orientations with Eq. (3) and expand the exponential term
then usingG0 ­ sxyyg we obtain

G0sgd ­
LA
R2

c

X̀
n­0

1
s2n 1 1d!

I4n15I2n12

≥Ag

2

¥2n
, (6)

whereIk ­
R2p

0 du sinku.
This result has an important consequence; Eq.

suggests that scaling individualG0sgd curves at different
volume fractions with their value at zero strain shou
yield a master curve for the excess elastic modulus t
is independent ofw. We test this prediction in Fig. 4,
where we plot all our data, rescaled by the modul
at small strain amplitudes, as a function ofg; the data
do indeed follow the predicted scaling. Moreover,
shown by the solid curve, we obtain excellent agreem
with the prediction Eq. (6) forG0sgd for all w if we
adjust the backbone dimensiondb to 1.07, a value which
is consistent with the scaling of the zero-strain elas
modulus with volume fraction. This value is also i
remarkably good agreement with the results of compu
simulations [16], particularly given the extreme sensitivi
of the fit todb.

Surprisingly, the stress response in the oscillato
shear experiments is remarkably linear, as measured
small third-harmonic stress components; however,
observe that the strains are not recoverable. This sugg
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FIG. 4. Elastic modulusG0sgd scaled with the zero-strain
modulusG0s0d as a function of strain amplitudeg. Symbols
denote different volume fractions of monomers (see Fig. 3
The full line shows a fit of a fourth-order power series ing2,
using the theoretical expansion factors [see Eq. (6)].

that small but finite deformations lead to formation
of contacts between side chains which now becom
part of the stress-conducting network; as the strain
released, these newly formed backbone segments eit
buckle or deform; deformation, however, counteracts th
complete recoil of stretched segments belonging to t
original network, leading to an enhanced modulus at ze
extension. Upon further extension, the stress response
now mainly due to the first-generation backbone segme
since their extension is large. This is consistent wi
the observation that the observed scaling ofG0sgd with
g is somewhat steeper than we would expect using t
predicted expansion coefficients.

The importance of buckling events is also revealed b
the loss modulus: at fixed strain amplitude,G00svd is
almost independent of frequency, suggesting that ene
dissipation arises from displacements rather than fro
coupling to velocities that would depend on strain rate
(i.e., gv in an oscillatory experiment). Then during
each oscillation cycle, a constant fraction of the wor
stored in the deformed network is lost in conformationa
changes occurring locally on the length scale of a netwo
segment, leading to a constant loss tangentG00yG0;
indeed, we also find that the loss tangent is practica
independent of the strain amplitude.

Unlike the nonlinear elasticity of rubbers which is
governed by entropic restoring forces [5], elasticity an
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strain hardening in fractal colloidal gels have their origi
in the intrinsic stiffness of contorted backbone segmen
increasing strain straightens the segments, resulting
an increase in the elastic modulus. Elasticity and stra
hardening in fractal colloidal gels rely critically on the
continuous network of permanent bonds. The mechani
for strain hardening presented here might be useful for t
understanding of the nonlinear rheology of semiflexib
polymer networks; it certainly provides an excellen
account of the behavior of colloidal gels.
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