VOLUME 82, NUMBER 5 PHYSICAL REVIEW LETTERS 1 EBRUARY 1999

Strain Hardening of Fractal Colloidal Gels

T. Gisler/* R.C. Ball> and D. A. WeitZ
'University of Pennsylvania, Department of Physics, 209 S 33rd Street, Philadelphia, Pennsylvania 19104
2University of Warwick, Department of Physics, Coventry, Warwickshire CV4 7AL, England
(Received 12 June 1998

We report on experiments on the rheology of gels formed by diffusion-limited aggregation of
neutrally buoyant colloidal particles. These gels form very weak solids, with the elastic mo@(w3,
larger than the loss modulu&”(w), and with bothG’(w) and G”(w) exhibiting only a very weak
frequency dependence. Upon small but finite strains: 0.45 the elastic modulus increases roughly
exponentially withy?. We explain the observed strain hardening with the highly nonlinear elastic
response of the rigid backbone of the gel to elongational deformation. [S0031-9007(98)08309-4]

PACS numbers: 81.40.Jj, 82.70.Dd, 82.70.Gg, 83.50.Gd

Colloidal particles aggregating by attractive interactionsStrain hardening also occurs in a completely different
form highly disordered clusters; these structures are, onlass of materials, semiflexible biopolymers such as cel-
average, self-similar, and the mass of a clust¢rscales lulose [7], F-actin [8], and vimentin [9]. Such polymers
with its radius,R, asM(R) ~ My(R/a)%, wherea is the  are responsible for the mechanical stability of biologi-
size of the colloidal monomer and, is its mass [1]. The cal tissues; however, the origin of the strain hardening
fractal mass exponend; characterizes the ramification in these systems remains obscure. Although structurally
of the cluster and varies betwedn = 2.1 for reaction-  different, colloidal aggregate gels share an essential fea-
limited cluster aggregation andy = 1.8 for diffusion-  ture with biopolymer networks: locally they each con-
limited cluster aggregation (DLCA) [2]. In the latter sist of segments with significant bending rigidity, which
case the distribution of cluster sizes is fairly narrowdominates their elastic properties. Thus, an understand-
and the characteristic cluster size grows linearly withing of the elasticity and strain hardening of colloidal gels
time. Aggregation of clusters eventually leads to a spacemay also provide important insight into the properties of
filling structure which is no longer fractal on all length these biopolymer networks.
scales but which can instead show long-range correlations In this paper, we present measurements of the elastic
as revealed by a scattering peak corresponding to properties of virgin colloidal aggregate gels. We show
characteristic cluster size. = a¢'/@~3) whereg isthe that their very weak elasticity increases as?2, in
initial volume fraction of monomer particles [3,4]. The agreement with theoretical expectations for a fractal
clusters themselves are close packed, forming a ramifieshetwork. In addition, we also show that the gels do
tenuous gel structure. This structure should be an elastindeed exhibit a pronounced strain hardening before they
material with unique properties, which are determinedcatastrophically break. Surprisingly, the data can all
not only by d;, but also by the connectivity or chemical be scaled onto a single master curve, independent of
dimension, dy,, which characterizes the scaling of the ¢. We quantitatively account for this strain hardening
contour length within the cluster. The elasticity of suchand the observed scaling using a model that predicts
a tenuous structure can be expected to be extremelpe nonlinear stress response of a network of randomly
weak; however, it should increase dramatically withoriented backbones of connected clusters.
increasinge. Since the backbone of the gel is contorted, We use polystyrene latex particles with diameter=
a shear strain will be accommodated by a lengthenind9 nm in a neutrally buoyant mixture of # and DO
of the backbone, stretching out the inherent bends. Thif3,10] at 25 °C; adjusting the density of the solvent to
should lead to highly unusual elastic properties; thehe particle density is necessary to suppress sedimentation
stretching of the backbone will increase its rigidity andwhich leads to either compactification of clusters and more
thus the gel can be expected to exhibit pronounced straingid structures (work hardening), or, at larger stresses,
hardening, becoming increasingly stiffer as it is stretchedbreakage of bonds before clusters touch each other (brittle
until it catastrophically breaks. However, because ofregime) [11]. We initiate aggregation by adding MgCl
the very weak elasticity and the difficulty of working to a concentration ob mM; with initial volume frac-
with completely unsheared, virgin gels, this interestingtions4.6 X 1073 = ¢ = 1.58 X 1072, gels form within
behavior has never been observed. several hours, leading to macroscopically homogeneous

By contrast, strain hardening has been observed in othetructures. Static light scattering [4,10,12] from these
types of gels; rubbers and swollen polymer gels exhibigels at lowere confirmsdf ~ 1.9, slightly above the
strain hardening when they are stretched enough that thelue expected for DLCA, and consistent with the ini-
chains are no longer described by Gaussian statistics [5,8]al aggregation being in the intermediate regime between
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diffusion- and reaction-limited cluster aggregation; weof the average cluster. The spring constant of a fractal is
note, however, that diffusion still dominates at longersize dependent, and is given ByR) = ko(R/a)~ @)
times, leading to a well-defined average cluster size. [14], where k¢ is the bending constant of an elemen-

We measure the linear storage and loss mo@tland tary bond. This expression reflects the fact that the
G" with a controlled-strain rheometer in an oscillatory extension of a fractal cluster occurs through the unbend-
shear experiment using a double-wall Couette geometryng of the contorted path of the chain; thus the spring
The gels are allowed to fully form in the rheometer cell,constant decreases as the cluster size increases and con-
ensuring that we measure the properties of the undisturbedrtions become easier to unbend. The spring constant
gel. Typical frequency-dependent moduli’ and G’  depends inversely on the cross-sectional area of the chains,
are shown in Fig. 1, for a gel withp = 8.9 X 1073,  assumed to b2, and inversely on the longitudinal chemi-
and using a strain amplitudg = 8 X 1073; reducingy  callength, which is proportional 8% . The elastic modu-
yielded the same values 6f (w) andG"(w), confirming lus of the gel is theiw’ = k(R.)/R., yielding an exponent
linearity. The storage modulus is about an order ofof v = (3 + dy,)/(3 — df) [15]. Experimentally, we find
magnitude larger than the loss modulus and is only = 3.2 = 0.3; given the sensitivity ofv to d;, this is
very weakly dependent on frequency; this is consistenin excellent agreement with the predicted value, which is
with the formation of a solid gel structure. The lossbetween 3.4 and 4.1 faf; between 1.8 and 2, and using
modulus is also nearly independent of frequency, excepi, = 1.1, obtained from computer simulations [16]. In
at the very lowest frequencies probed, where a smakddition, at the lowest volume fractions, the magnitude
increase indicates persistent loss mechanisms presumatdff G’ agrees very well with the value determined from
indicative of very slow rearrangements within the gel; wedynamic light scattering [10].
emphasize, however, that these rearrangements occur on arhe fractal structure and connectivity suggests another
time scale that is many orders of magnitude slower thaimportant consequence for the elastic properties of the
the measurement time. gel; as the network is strained, and the inherent bends

The dependence af’ on ¢ is shown in Fig. 2. We are removed, we expect a rapidcreasein the elastic
find a power-law scalingz'(¢) ~ ¢, comparable with modulus with increasing strain. We test for this using a
measurements of the compactive strength [13]. The magseries of gels of differenp by measuring the dependence
nitude of the modulus reflects the fact that the elasticity iof G’ and G” on the maximum strairy of an oscillatory
governed by the intrinsic stiffness of the colloidal aggre-measurement at a fixed frequencyl6frad/s. As shown
gate network. By contrast, a polymer gel, whose elasticityn Fig. 3, we observe a linear response o 0.1, where
is entropic in origin, would have&;’ ~ NkgT, whereN  both G’ and G” are independent of. Further increase
is the cross-link density; sind€ = 1/R?, these colloidal in strain amplitude results in a very rapid increase in
gels have a modulus that is roughly 4 orders of magnitud&’ and G”, up to v = 0.45 above which both moduli
larger than an equivalent entropic gel. To account fordrop precipitously; larger strains are no longer recoverable,
the observedy dependence, we assume that the moduindicating irreversible breakage of bonds between clusters.
lus is determined by the spring constant of the backbon&he behavior of these gels is in strong contrast to the
marked shear thinning observed in weakly flocculated
suspensions where boti andG” decrease above a yield
strain which is strongly dependent @n[17].

To account for the strain hardening, we consider the
effects of a large strain on a single, stress-bearing seg-
10% k ment of the network and average the contributions from

W randomly oriented segments. In a randomly connected
network, shear stress is accommodated by a longitudi-
nal stretching of the strands that form the backbone. A
large longitudinal strain), stretches an individual strand,
pulling out the bends that govern its elasticity, and mak-
ing it anisotropic in shape by increasing its length while
decreasing its width. This drastically modifies its elas-
tic constant, which is now characterized in terms of the
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107 bl new width,&. Expressing the strain as= g&/R., where
10t 10° 10?7 10" 10 10" 100 g = (R./&)® is the number of blobs of sizé, the new
o [rad/s] width is &€ = R.A'/0=4)  Then, the spring constant of

. the extended strand is given by that g@fsprings in a
FIG. 1. Linear storage modulus’(w) (@) and loss modulus . I N L 2+dy) 32/ (do—1) .
G"(w) (M) as a function of angular frequenay at volume Series, y'eld'ng‘(_’\RC) B kO(I_ec_/”) YA /(, P Th's
fraction ¢ = 8.9 X 1073 after full gelation of clusters. The SPring constantis very sensitive to the straipfor typical

strain amplitude of the oscillatory shear was= 8 X 1073, values ofdy, which are close to unity [16]. The force
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@ FIG. 3. Elastic modulusG’ as a function of the strain

FIG. 2. Elastic modulusG’ of gelled polystyrene latex as a ?rg]g:gﬁgeya'rg a; c;sglll7at>c<>r)1/o§21?g; ex?oer=|m7egt.x 'll'(r)17e3(v.o)lume
function of volume fractione of primary particles, measured 0 =64 X 103(®) '(p —55% 1’073“) "~ and p Z

at small /strain Vamplitu.deS X .1074 =y=8x10" The 46 x 10‘3(V). The excitation frequeﬁcy is10 rad/s.
scaling G' ~ ¢ (full line), with an exponentr =~ 3.2, IS gyaing beyondy ~ 0.45 result in (irreversible) breakage of
consistent with the predictiom = (3 + dy,)/(3 — df) = 3.73 the backbone

usingd; = 1.9 and a value for the backbone dimensidn= '

1.1 for diffusion-limited aggregation.

AY Gons Ay’ _
required to stretch a backbone segment by a fakxter L exp{ 2 S sin2¢ + 2 sin'6 coé"d)] L,
(5)

) = koa(Re/a)™' ~[A* — 1], (1) A Ry | es of
_ _ whereL = koa(R./a)”'~“. Forlarge values ok (d, =
Whﬁ:eA t_ .(1J db){j(db lf).th' ‘ leads 1o the st 1), there is a regime where terms quadraticyin are
€ strain dependence of this force leads 10 the stralf,,) - yq neglect the quadratic term, integrate over all

hardening of the modulus. To calculate this, we assume . ; ; ; .
that the deformation is affine, characterized by the defofhr:eennf:ilgg(s;/\/\l I=thf q))(/33v2ngbet;!3r]and the exponential terms;
xy

mation tensoA. Backbone strands are then both stretche o

and rotated by, and the magnitude of for any chain de- G'(y) = LA 1 I (ﬂ)ﬁ (©6)
pends on its orientatiom with respect to the principal axes Y RZ = 2n + 1)! AR VA

of the deformation tenson, = |An|. The force along a

21 .
strand isf(|An|)An/|An|, from which the total stress is Wherel, = Jo" de sw(‘e..
calculated as This result has an important consequence; Eq. (6)

1 An suggests that scaling individuél'(y) curves at different
o= /dzr An — f(|An]), (2) volume fractions with their value at zero strain should

R: |An yield a master curve for the excess elastic modulus that
where we have assumed a uniform distribution of strands independent ofp. We test this prediction in Fig. 4,
orientations. Wher,, = 1, extensional stresses dominatewhere we plot all our data, rescaled by the modulus
over contributions from compression and rotation; theat small strain amplitudes, as a function of the data
force along a directiol\n may then be approximated as do indeed follow the predicted scaling. Moreover, as

njf(|Anl), resulting in shown by the solid curve, we obtain excellent agreement
1 with the prediction Eqg. (6) forG'(y) for all ¢ if we
Txy = 12 ff sing df d ¢ sirtd sin2¢ (A0, ¢)). adjust the backbone dimensidy to 1.07, a value which

¢ is consistent with the scaling of the zero-strain elastic

) ) (_3) modulus with volume fraction. This value is also in
In the case of a simple shear along theaxis with  remarkably good agreement with the results of computer
a strain y the zex_ten3|on rallt|20 isA(0, ) = (1 +  gimulations [16], particularly given the extreme sensitivity
ysirdsin2¢ + y?sirtdcos¢)/?> and the force f ihe fit tody.

becomes Surprisingly, the stress response in the oscillatory
F(A) = L[1 + ysirdsin2¢ shear experiments is remarkably linear, as measured by

2 A2 small third-harmonic stress components; however, we
+ ¥ sim6 cos ¢ L, 4) observe that the strains are not recoverable. This suggests
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6 ; — . : strain hardening in fractal colloidal gels have their origin
in the intrinsic stiffness of contorted backbone segments;
] increasing strain straightens the segments, resulting in
an increase in the elastic modulus. Elasticity and strain
. hardening in fractal colloidal gels rely critically on the
continuous network of permanent bonds. The mechanism
. for strain hardening presented here might be useful for the
f understanding of the nonlinear rheology of semiflexible

G'(r)/G'(0)

7 polymer networks; it certainly provides an excellent
account of the behavior of colloidal gels.
1 ] We gratefully acknowledge support from NSF
! (DMR96-31279) and NASA (NAG3-2058); T.G. was
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FIG. 4. Elastic modulusG'(y) scaled with the zero-strain
modulusG'(0) as a function of strain amplitudg. Symbols *Present address: Universitat Konstanz, Fakultat fiir
denote different volume fractions of monomers (see Fig. 3). Physik, P.O. Box 5560, 78457 Konstanz, Germany.
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