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Abstract 

We report dynamic light scattering experiments on turbid colloidal suspension under 
stationary and laminar flow, as well as in the regime of flow instabilities. It is shown 
that the time autocorrelation function CI (t) = (E(O)E* (t)) /{ lE(O)l  2) of the scattered 
light field E ( t )  is not sensitive to the mean velocity flow but rather to the root 
mean square of velocity gradient. C~ (t) is characterised on the level of each scattering 
event by the correlation time required by a pair of scatterers initially separated by 
a transport mean free path to move a relative distance of optical wavelength due 
to the velocity gradient. We verified this theoretical analysis using planar Couette 
flow as an example for homogeneous velocity gradients, and planar Poiseuille flow 
for inhomogeneous velocity gradients. Agreement between experiment and theory is 
excellent. Finally, this technique is applied to spatially varying velocity gradient fields 
for measuring the threshold and wave number of the Taylor-Couette instability. This 
illustrates the possibility of studying hydrodynamic instabilities and quasi-local velocity 
gradients even under conditions of strong multiple scattering. 
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1. Introduction 

One of the most important techniques to measure velocities in flowing 
fluids is Quasi Elastic Light Scattering (QELS) [1,2], since this method is 
both accurate and non-invasive. Application of this technique requires a small 
concentration of the scattering particles which serve as markers by flowing with 
the fluid, so that only single scattering occurs. Many colloidal suspensions of 
technological and fundamental interest, however, are turbid i.e. show multiple 
scattering of light because of elevated concentrations of strongly scattering 
particles. It is therefore important to develop techniques that cope with this. 
Wu et al. [3] have shown that the temporal fluctuations of the multiply 
scattered light intensity can be analysed, along the lines developed to study 
Brownian motion [4-6] in dense colloidal suspensions, to measure a mean 
square velocity gradient in laminar planar Poiseuille flow. This rather novel 
technique is sometimes called Diffusing Wave Spectroscopy (DWS) [5]. 

In this paper, we show that by comparing measurements in different scatter- 
ing geometries (homogeneous, inhomogeneous and spatially periodic velocity 
gradient fields) with the appropriate theory, quantitative information about 
quasi local velocity gradients and hydrodynamic instabilities can be obtained. 
In the first part of this paper, we resume the theoretical developments [7,8], 
which are necessary to determine the root mean square of the velocity gradient 
from the measured temporal autocorrelation function of light multiply scat- 
tered from small particles immersed in a steady laminar flow. In the second 
part, we report experimental results on steady and laminar planar Couette and 
Poiseuille flows which critically test the method for homogeneous and inhomo- 
geneous velocity gradient fields, respectively. All relevant physical quantities 
are measured independently, allowing for a quantitative comparison of theory 
and experiment without adjustable parameters. Finally, in the third part, we 
extend the method beyond the hydrodynamic Taylor-Couette instability. Both 
the experimental results and theoretical analysis allow to measure the threshold 
and wave number of hydrodynamic instabilities, and to monitor quasi local 
velocity gradients up to Reynolds numbers well above threshold. 

2. Theory 

In quasielastic multiple light scattering experiments, the motion of par- 
ticles is probed by monitoring the time autocorrelation function C~(t) = 
(E(O)E*(t))/(IE(O)I2), where E(t)  is the scattered electric field of light col- 
lected by the detector. Experimentally, the intensity autocorrelation function 
(I ( t)I  (0))/(I  (0)) 2 is determined rather than C1 (t). When the scattered electric 
fields are Gaussian distributed, C1 (t) is related to the intensity autocorrelation 
function by the Siegert relation [9]: 
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( l ( t ) I (O))  1 + IC~ (t)l 2 
( i ( o ) ) 2  - 

To compute C1 (t) we consider light which is multiply scattered by a random 
distribution of point-like particles, and hence executes a random walk through 
the sample. Within the weak scattering limit (kl >> 1; k and l being the wave 
number and the scattering mean free path of light, respectively) and in the 
strong multiple scattering regime (L >> 1 ; L being the linear dimension of the 
sample cell), the intensity of light leaving the sample can be described in the 
diffusion approximation [10]. The time autocorrelation function is given by 
[3,4,6,10,11 ]: 

o o  

Cl (t) = Io y ~  P(n)(exp{iAqAn (t)}) (1) 
n = l  

where P (n), the fraction of total intensity I0 scattered in all n th order scattering 
paths, describes the diffusive transport of light and is related to the sample 
geometry. A~bn(t) = ~ ] n = l q , .  Ar , ( t )  is thus the phase difference of the 
scattered electric field between time t = 0 and t, associated to a given multiple 
scattering paths of 11 th order, and contains the dynamical information about 
the scatterers. (-..) denotes both the configurational average of Ar , ( t )  = 
r,  (t) - r v ( 0 )  (displacements during time t of lJ th scatterer) and the average 
over all possible scattering wave vectors q, = k,  - k , _ l .  We consider now a 
fluid under laminar stationary flow, containing independent elastic scatterers 
which follow the fluid motion. In addition to the motion imposed by the fluid, 
the scatterers undergo also a Brownian motion because of finite temperature. 
If Brownian motion is not affected by the velocity gradient field, i.e. when 
the Taylor dispersion [12,13] can be neglected, the total displacement of 
a scatterer can be separated into a diffusive and convective part. Then we 
can treat separately the decorrelation of scattered fields due to these two 
independent motions. For Brownian motion, the derivation of the averaged 
quantity of Eq. (1) can be found in Refs 4 and 6. In order to describe the 
decorrelation caused by the flow, we make the following assumptions: 

(i) The properties of multiple scattering of light are not affected by the flow, 
there is no correlation between the scattering mean free path and the velocity 
field and its derivative. 

(ii) The velocity field varies slowly at the scale of scattering mean free path. 
This implies that the scattering mean free path is much smaller than the 
dissipation scale of flow. 

(iiO The flow is stationary or quasi-stationary. This means that the char- 
acteristic time scale of the time autocorrelation function is smaller than the 
characteristic time scale of velocity changes. 

One can show [7] that, for incompressible fluids, the leading non vanishing 
term in a cumulant expansion of Eq. (1) is the second cumulant which 
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corresponds to the fluctuations of the phase difference. We have: (...) = 
exp{-(A4~ 2 (t))/2}, where the fluctuations of AqSn (t) are given by the relation 
[7,8]: 

(A4~2(t)) = 2 (kl t )2ne(n)  (2) 

and a(n)  is defined as: 

e(n)=2y]~{fa~(r)pn(r)d3r};., i , j = x , y , z  
l , J  

(3) 

where aij = l ( o i V j  + OjVi)  is the strain tensor, and pn(r) is the end-to- end 
local density distribution of diffusion path of n th order [7,8]. This distribution 
depends upon the geometry of the sample, e(n) is the expectation value of 
the square of the strain tensor weighted by the cloud of light paths, e(n) 
describes the fact that due to the spatial variation of the strain tensor, the 
dephasing of light is not the same everywhere in the scattering medium: For 
each geometrically different n th order scattering path, one expects a different 
contribution to the dephasing of  light. Thus systems with homogeneous velocity 
gradients over the whole scattering medium are distinct from systems with 
inhomogeneous velocity gradients. 

2.1. Homogeneous system: Planar Couette flow 

Planar Couette flow is the simplest homogeneous system. The velocity profile 
is V = Fxez where F is the shear rate and e z the flow direction. The non 
zero element of  the strain tensor is: axz = F/2. Therefore, e(n) = F 2, and 
the fluctuations of the phase difference can be written as: 

(A~ 2 (t)) = 4(t/Zc)2n (4) 

where re = vZ~/k lF  is the characteristic time needed by a pair of scatterers 
initially separated by a distance l to move a relative distance it due to the 
velocity gradient F.  Taking into account Brownian motion, we thus have: 

(exp{iAq~n(t)}) = exp( - ( t /Zz0)  n - 2(t/zc)Zn} (5) 

with r0 = 1/4kZD~, where De is the diffusion constant of the scatterer. The 
time autocorrelation function is therefore given by: 

OQ 

Cl(t) = / P ( n )  exp{- ( t /2 r0 )  n - 2(t/rc)2n} dn (6) 
I i i  

1 

where we have taken the continuum limit by replacing in Eq. ( 1 ) the sum over 
n by integral. C1 (t) has two independent time scales, z0 and Zc, corresponding 
to the Brownian motion and shear of planar Couette flow, respectively. In zero 
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shear (F  = 0), C1 (t) has an exponential decay exp{-(t/2ro)} per scattering 
event, which is characteristic of stochastic motion. When Brownian motion is 
neglected, C1 (t) has a Gaussian decay exp{-2(t/rc) 2} per scattering event, 
which is characteristic of deterministic motion. In general, the decay of Cl (t) 
is dominated by Brownian motion at short times t < (Zc2/4z0) and by shear 
flow at long times t > (ZcZ/4r0). The final expression of C1 (t) is obtained by 
integration over P (n) for a given experimental geometry. For reflection of an 
extended plane wave source from a slab of thickness L, we obtain [11 [: 

1 sinh [ ( L / I -  7) x/6(t/Zc) 2 + (3t/2ro)] 
Cl (t) - ( 7 )  

1 -  yl/L sinh [(L/l)v/6(t/Zc) 2 + (3t/Zr0)] 

7 (see Section 3) is a coefficient related to the boundary conditions of transport 
of light through the sample. In the limit L/l  >> 1 (thick medium),  we have: 
C1 (t) = exp{-y  x/6(t/rc) 2 + (3t/2r0)} . 

2. 2. Inhomogeneous system." Planar Poiseuille flow 

The velocity profile of planar Poiseuille flow is V = r ( L x -  x2)ez ; 0 < 
x _< L ,  and the strain tensor is a linear function of x: axz = ~-(1 - 2 x / L ) .  In 
this case, the computat ion of (A~b 2 (t)) requires the evaluation of the integral of 
Eq. (3). The key for this is the determination of Pn (r) for a given experimental 
geometry. We consider here the multiply scattered light transmitted through a 
slab of thickness L. This results in an effective velocity gradient Fef f [7]: 

Pelf  1 2 16 ~-, m sin [mnl/L] 
F 2 - 3 7~ 2 + ~ ~ [1 --  ( - - 1 )  m ] (m2-- - i )  2 sin[hi~L] 

m=3 

x exp -6/2 (8) 

and, the fluctuations of the phase difference in transmission take the form: 

(AO2n (t)) = 4(t/rp)2n (9) 

where rp = v '~ / k lFe f f  . rp has the same definition as Zc given above, and 
can be considered as the characteristic correlation time corresponding to the 
presence of an effective shear rate Feff caused by the planar Poiseuille flow. 
Ct( t )  is given as in Eq. (6), except that rc is replaced by r v. In the case 
of transmission through a slab illuminated by a plane wave source, the time 
autocorrelation function is given by [ 11 ]: 

C~(t) L sinh [y v/6( t / rp)2  + (3t/2r0)] 
= - -  ( 1 0 )  

yl sinh [(L/l)v/6(t /rv)  2 + (3t/2z0)] 
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Thus for transmission, the characteristic decay time of C1 (t) is (I/L)2ro 
if ro << rp and is ( l /L)rp  if ro >> rp (except for small time window at 
t < ( l /L) ( r2 /4ro) ) .  C1 (t) takes a simple form when the shear dominates the 
decay. In the limit rp << ( l /L)ro,  we have: 

1 - (t/zT-)2; ( l /L) (z~/4ro)  < t < zv 

C~(t) ~- (11) 
2x/-6~ exp ( -v / -6~} ;  rT < t < rp 

with zT = Izp/L = V/-(30)/kLFeff.  Note that, despite of the strong multiple 
scattering, C1 (t) in transmission does not depend on the quantities l and 
describing the multiple scattering properties of the medium. Therefore I~eff 
can be obtained without particular knowledge of these properties. 

We have considered so far suspensions of noninteracting small particles of 
size (a) much smaller than the optical wavelength 2 (Rayleigh regime or 
isotropic scattering). However, in many experimental situations, particles are 
larger size (a >_ 2, Mie regime) and light is scattered anisotropically [14]. 
This leads to a transport mean free path l* in the description of light transport 
which is larger than the scattering mean free path I. l* and I are related through 
the particle form factor F (q )  [15]: 

l* 2k 2 f F (q) q dq 
--f = f q Z F ( q ) q d  q 

Maret and Wolf have shown [ 4 ] that for particles undergoing Brownian motion, 
C1 (t) obtained for point like scatterers and for Mie scatterers are exactly the 
same provided that l is everywhere replaced by l*. This fact remains still valid 
for the case of flows as long as the velocity field varies slowly at the scale l* 
(see Appendix A). 

3. Experimental 

3.1. Set-up 

We used a vertically polarized beam ofmono-mode Ar + laser (2 = 514.5 nm) 
beam incident on the sample cell. Less than one coherence area [9] of the 
vertical component of the scattered light is collected onto a photomultiplier 
tube (VV-configuration). From the photomultiplier output I (t) the normalized 
intensity autocorrelation function C2(t) is determined using a PC- controlled 
digital multibit correlator with up to 1024 channels. From the PC we obtain 
the time field autocorrelation function C1 (t). Because the area of observation 
of scattered light cannot be infinitesimally small compared to the coherence 
area [9], Cz (0) and C1 (0) are experimentally always somewhat smaller than 2 
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and 1, respectively. Quantitative comparison between experiments and theory 
is made by normalizing C1 (t) to experimental value Cl (0). 

3.2. Samples  

Samples were a kind gift from AKZO Corporation. We report results on 
sample A 1, which is a suspension of  Ti02  particles at initial volume fraction 
~0 = 0.702% in _~ 85% 1-120, ~- 10% resin and ~_ 4o/o organic solvent. Dilutions 
were made using distilled water. The sedimentation time (of order of  24 hours) 
of  this suspension was much larger than the duration (of order of  30 mn) of a 
light scattering experiment. A 1 is shacked and sonicated before the experiment 
in order to obtain a homogeneous suspension and to eliminate eventually the 
few large aggregates which tend to form. We have determined the viscosity 
versus qb, average particle size, ~, and l* as follows: 

3.2.1. Viscosity versus solid fraction ~1( ~ ) 
We used a velocity gradient viscosimeter operated at velocity gradients 

between 6 and 130 s -1, and temperature T = 298 K. For all ~ ,  the viscosity 
r/(~ ) did not depend on the velocity gradient, indicating that the suspension is 
a Newtonian fluid. From the measurements, we have obtained the extrapolated 
function4: r/(x) = q0(1 + 0.63x + 0.425x 2) for 10 -5 < x = q~/q~0 < 1 and 
r/0 = 0.906 cP. Furthermore, the density measured between T = 293 and 
300 K was independent of  ~ ,  and its value (p = 0.968 + 0.014g/cm 3) equal 
to the density of  water. Thus, we know both the dynamic r/(x) and kinematic 
u (x) viscosity of  the suspension. 

3.2.2. Average size o f  T i02  particles 
We have used the standard QELS technique [9] to determine the particle 

size. This technique consists of  a measurement of  the single scattering corre- 
lation time r0. The particle size is then calculated from the Stokes-Einstein 
relation. The experiment, made at • -~ 7.10 -5 % and T = 293.54 K, revealed 
a monoexponential decay of  C l ( t )  indicating that the suspension A1 was 
monodisperse, and the Ti02  particles have the average diameter = 0.284/1m, 
corresponding to Mie particles [14]. 

3.2.3. Coefficient y 
~, ( =  1 + A ) is the distance (in units of  transport mean free path) after which 

the non diffusive light impinging from the outside of  the sample is converted 
into diffusive light inside the sample. The value of  A depends sensitively on the 

4 Note that the function ~/(x) is different from the Einstein relation [16]: q(x) = qo(1 + 
2.5 ~0 x). This difference is attributed to the change of the reference viscosity q0 during successive 
dilutions with water. 
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transport of light near the sample boundary, and therefore depends on particle 
size, polarization and skin layer effects [17] 5. For isotropic scattering and 
for vanishing optical index mismatch between the scattering medium and its 
surroundings (i.e. in absence of skin layer effects) the scalar value A 0 = 0.7104 
is obtained from the Milne theory. For real situation of  nonzero index mismacth 

may be different from A0. For instance, A = 0.757 corresponds to ratio 0.89 
of the inner and outer refractive index for a water-glass interface [ 17 ]. In order 
to measure 7, we have performed a multiple light scattering experiment for VV 
polarization near backscattering from a semi-infinite medium in zero shear. 
Within the framework of scalar wave theory, one can show (see Eq. (7) with 
rc ~ c~) that 7 is the slope of C1 (t) versus x/'~/2Zo in backscattering. With r0 
as obtained from the single scattering QELS experiments, we found ~ = 1.67 
within 4%. This value of ~ is very similar to those given in literature [6,15] 
for polystyrene spheres in the Mie regime [14] (size _ 0.2-0.6 ~tm). The 
additional internal reflections from the air-glass interface do not significantly 
affect our results, as experiments using water instead of air as the outer medium 
gave identical data. 

3.2.4. Transport mean free path versus solid fraction, 1" ( 4  ) 
In order to measure the transport mean free path l*, we have performed 

multiple light scattering measurements of C1 (t) in a slab of thickness L = 
1 mm in the transmission geometry. To fit the experimental data, we used 
Eq. (10) with rp ~ ~ .  r0 and ~, being known from above, the only fitting 
parameter of  Cl( t )  is l* . We obtained: l*(x)  = 15.92/x [/zm] ; 0.1 _< x = 
q~/~0 < 1. 

4. Results and discussion 

4.1. Laminar and stationary flows 

To test the model described in Section 2, we have performed experiments 
on laminar shear flow in the planar Couette and planar Poiseuille geometry. 
For all experiments we used the suspension A 1 as characterized above. 

4. i .I .  Planar Couette flow 
The Couette cell is sketched in Fig. 1. The inner cylinder is rotating with 

constant angular velocity £2 and outer cylinder is at rest. Because of the small 
gap L/R2 ~ 6.7 × 10 -2, the effect of  curvature of the cylinders on the trajectories 
of fluid particles can be neglected, and the flow can be described by the planar 
Couette flow with a linear velocity profile given by: Vo = F ( L - x ) ,  0 < x < L, 

5 A corresponding to z 0 o f  Ref. [ 17 ]. 
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Fig. 1. Sample geometry for Couette flow: The Couette cell consists of two coaxial cylinders. The 
inner stainless steel cylinder rotates with constant angular velocity f2, and the outer glass cylinder 
of thickness 1.5 mm is at rest. R l = 1.26 cm and R 2 = 1.35 cm are the respective outer radius 
of the inner cylinder and the inner radius of the outer cylinder. The inner cylinder is recovered 
by black paint to absorb light. L = R 2 - R1 is the gap between cylinders, h = 9.7 cm the fluid 
height in the Couette cell. The horizontal fluid surfaces are free on the upper side and rigid on 
the lower side. The incident laser beam (of waist d _~ 1 mm), pointing along the radius of the 
cylinders, impinges on the center of outer cylinder and is vertically polarized. The scattered light 
is collected on same side of the cell off backscattering. 

where F = Q R I / L  is the constant  veloci ty gradient  be tween cylinders. Using 
a s t roboscope system, ~ is measu red  with accuracy of  0.65%. For  the Couet te  
flow, we used the suspension A 1 at vo lume  fract ion 0.1 17%. The  m a x i m u m  

angular  veloci ty used was: f2max = 12.14 r ad / s  cor responding to a velocity 
gradient  Fma x = 170 s - l  and  a Reynolds  n u m b e r  o f  R = QmaxRlL/U = 134. 
This  Reynolds  n u m b e r  is below the critical value Rc = 156.7 [18] of  the 
Taylor -Couet te  instabili ty,  so that  this exper iment  probes  the l amina r  flow 
regime. The  dynamic  light scattering exper iment  is carr ied out in reflection 
with an extended plane wave source (o f  waist d such that  d/ l*  -~ 1 I ) .  The  
exper imenta l  pa rame te r s  are given in Table  1. 

The  goal o f  this exper iment  was to measure  the veloci ty gradient  in p lanar  
Couet te  flow by the sole analysis o f  C1 (t) .  Fig. 2 shows the data  for C1 ( t)  
in quiescent  state R = 0, and  a fit to Eq. (7) with Zc ~ co. F r o m  this 
we obtained:  z0 = 495 as.  Also shown are data at increasing values of  (2. 
Since at t ime  scales (o f  order  o f  lOOps) the Taylor  dispersion [12,13] is 
negligible, z0 is not  affected by the presence o f  a velocity gradient,  and  has 
thus the same value in curves labelled 1 to 5 in Fig. 2. Fig. 2 illustrates that  
the decay rate o f  C1 (t)  at long t imes increases with the veloci ty gradient,  
i.e. the correlat ion t ime  Zc decreases with F .  The  inset o f  Fig. 2 shows that  
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Table 1 
Parameters used in the planar Couette flow experiment 

Temperature  
Kinematic viscosity 
Wavelength (in water) 
Thickness of  slab 
Coefficient y 
Scattering mean free path 
Transport  mean free path 

T = 296.54 K 
v = 1.03 x 10 . 2  cm2/s  

2 = 386.84 nm 
L = 0.9 m m  
7 = 1.67 
l = 45 .42 / lm  
l* = 89.07/~m 

C ~y  

0.4 ,'7 

0.2 

0 . 0 ~  
C, 

i 

20 

t 
- - 4  
6 2 0 ]  

3 
[ 

i i , i 

40 60 80 100 

t [#see] 

Fig. 2. Cl (t) versus t for reflection geometry. The dashed curve corresponds to Brownian motion 
alone ( F  = 0 s -  t ), and solid curves relate to different values of  imposed velocity gradients: 
( 1 ) F  = 27 s - l  , ( 2 ) F  = 43.8 s - l  , ( 3 ) F  = 62 s -1 , ( 4 ) F  = 80 s -1 , ( 5 ) F  = 137 s - l .  

Inset: ln[Cl ( ( ) ]  versus the reduced variable ~ = X/6(t/zc) 2 + (3 t /2r0)  . 

curves 1 to 5 superimpose when plotted against the reduced variable ( = 
x/'6(t/rc) 2 + (3t/2r0), demonstrating that Cl( t )  is a function of  the sole 
variable (. Fig. 3 shows the data set at F = 80 s -1. The best fit of these data 
with Eq. (7) (solid curve through the data) gives F~xp = 86.62 s -1, whereas 
the dashed curve corresponds to Eq. (7) plotted with F equal to the imposed 
value. The close agreement between data and Eq. (7) is evident. In Fig. 4 we 
show Fexp as obtained by this way for various values of F.  This plot shows 
that, within 8.9%, the two measurements of  Fexp and F quantitatively agree 
without any adjustable parameters demonstrating hence the validity of our 
theory presented in Section 2. The small discrepancy between F and Fexp may 
be due to skin layer effects [17]. 

4.1.2. Planar Poiseuille flow 
We have also performed experiments in a rectangular flow cell with the 

sample dimension shown in Fig. 5. Because of  the large aspect ratio h/L = 

10, one can neglect the boundary effects in y direction and consider planar 
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t 

o.oi, 
0 1 0  2 0  3 0  4 0  5 0  

t [ ,~c ]  

Fig. 3. Ct (t) versus t at imposed F = 80 s -1  for reflection geometry. The circles are experimental  
data, and the solid curve corresponds to the best  fit o f  data  to Eq. (7) with Fexp = 86.62 s -1.  
The dashed curve is a plot o f  Eq. (7) with F = 80 s -1.  

2 0 0  . . . . .  , . . . . .  , . . . . .  , , ,  ~ ,  . . . . .  , . . . . .  . 

ff 80- . - "  ] 

0 5 0  6 0  9 0  1 2 0  1 5 0  1 8 0  

r [S~c -1] 

Fig. 4. Fexp versus F .  Fexp is measured using a fit to Eq. (7) and F is directly obtained from the 
measurement  o f  g2. The experimental  data (circles) are well described by a straight line (solid 
curve) o f  slope ~ --- 1.089. 

Poiseuille flow. The velocity profile in z direction is parabolic: Vz (x) = 
F.if_4L ( L 2  - 4 x 2 )  ," @ -- < X _< {, where F = 4Vo/L. The velocity gradient F is 
related to the flow rate by Q = hLZF/6. The flow of fluid is obtained by 
elevation of a large section container (section of container/section of sample 
cell _ 103)  filled with suspension A1 above the sample cell. Container and 
sample cell are connected by a cylindrical tube of the same cross-section of 
area than the sample cell. Q was obtained by measuring the election volume 
per time. Suspension A 1 at volume fraction 0.234% flows through the sample 
cell at constant flow rate. The maximum flow rate used w a s :  Qmax = 6.67 x 
10 -2 cm3/s corresponding to V0 = 6.25 cm/s and a Reynolds number R = 
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x\ iy 
", I I I 

[ 4t:  c ~ -  

Fig. 5. Sample geometry for planar Poiseuille flow: The rectangular cell is a glass capillary with 
dimensions: L = 0.4 m m ,  h = 4 m m ,  c = 90 mm. V 0, the maximal velocity in the center of 
the cell, is directly obtained from the measurement of the flow rate Q. The velocity gradient is in 
x direction. The incident laser beam (of waist d _~ 1 ram), directed along the velocity gradient 
and vertically polarized, passes through the center of the cell. The scattered light is collected in 
transmission on the same axis as the incident direction. 

Table 2 
Parameters used in the planar Poiseuille flow experiment 

Temperature 
Kinematic viscosity 
Wavelength (in water) 
Thickness of slab 
Coefficient 7 
Transport mean free path 

T = 296.54 K 
u = 1.15 x 10 -2 cm2/s 
2 = 386.84 nm 
L = 0.4 mm 
7 = 1.67 
l* = 44.97 am 

VoL/2u = 10.9. For Poiseuille flow, this Reynolds number is well below of 
the turbulent threshold Rc ~- 5772 [19], so that this experiment is in the 
laminar flow regime. On the other hand, in order to avoid perturbations due 
to entrance effects [19-21],  we have to work at Reynolds number such that 
the characteristic distance z~ for entrance effects is smaller than half of the 
cell length c/2. This means: R _< 112.5. 

The dynamic light scattering experiment was carried out in the transmission 
geometry. Since d / L  ~_ 2.5, the laser beam was considered as an extended 
plane wave source. Table 2 gives parameters used in this experiment. 

Note that the typical number of scattering events is (L/l*)2 ~_ 80. In order 
to determine the velocity gradient in inhomogeneous (Poiseuille) flow, we 
measure the correlation time Zp defined in Section 2. According to Eq. (8), 
using the values of L and l* from Table 2, the effective velocity gradient 
is I"ef f = 0.4674F. Note that this value of Feff is about 20% less than 
a homogeneous averaged velocity gradient. In absence of flow (zp ~ ~ in 
Eq. (10)) we measured the Brownian correlation time: z0 = 583ps. This 
time remains constant in the presence of velocity gradients because of the 
negligible correction of the Taylor dispersion [12,13]. A typical result with 
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Fig. 6. Cl (t) versus t at imposed F = 246.75 s -1.  The circles are experimental data for 
transmission geometry. The solid curve corresponds to the best fit of  data to Eq. (10) with 
Fexp = 257.58 s - l .  The dashed curve is the plot of  Eq. 10) with a velocity gradient equal to the 
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Fig. 7. Fexp versus F. Fexp is measured using Cl (t)  and £ is directly obtained from the measure- 
ment of  flow rate Q. The experimental data (circles) are well described by a straight line (solid 
curve) of  slope a = 1.043. The expected straight line of  slope a = 1 (dashed curve) is shown for 
comparison. 

an imposed velocity gradient F = 246.75 s -1 is shown in Fig. 6 . The best 
fit to Eq. (10) (solid curve through the data) gives Fexp = 257.58 s -t .  The 
dashed curve corresponds to Eq. (10) plotted with F equal to the imposed 
value. It appears that the data are well described by the theory of Section 2. 
Furthermore, over the entire range of  accessible shear rates, the measured time 
autocorrelation functions are well fitted by Eq. (10) with Zp (or F )  the only 
fitting parameter. In Fig. 7 we have plotted Fexp as obtained from these fits 
versus F.  The result agrees within 4.3% with the theory [7,8] note that the 
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Fig. 8. Schematic diagram of Taylor-Couette flow above Rc. 

parameter y is also known within about 4%. This confirms the functional form 
of the time autocorrelation function despite of the inhomogeneous velocity 
gradient. In other words, for Poiseuille flow the time autocorrelation function 
has the same functional form as the one for a homogeneous system of identical 
size, provided that F is replaced by Feff. This also implies that the average 
velocity gradient for inhomogeneous shear is well described by introducing the 
local density distribution of diffusion paths. 

4.2. Taylor-Couette instability 

For small Reynolds numbers, Taylor-Couette flow in an infinitely long system 
has only an azimuthal velocity component. This is so-called circular Couette 
flow (CCF) was studied in the previous subsection. We now consider Couette 
flow at higher Reynolds numbers [22]. At the critical Reynolds R = Rc [22], a 
centrifugal instability gives rise to time-independent Taylor vortex flow (TVF). 
TVF (Fig. 8 ) consists of a sequence of pairs of counter-rotating toroidal vortices 
(the vortex width is roughly equal to the gap L between cylinders) stacked 
along the cylinders. The velocity varies periodically (with a period 2L) along 
the system axis, and is constant in the azimuthal direction. At R = 1.2Rc 
appears a first time-dependent regime, wavy vortex flow (WVF), in which an 
azimuthal travelling wave is superimposed on the TVF. The velocity power 
spectrum contains a single frequency, o~1, and the flow is strictly periodic. 
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Table 3 
Couet te  cell system with inner  cylinder rotating and outer  cylinder at rest 

101 

Inner  cylinder radius 
Outer  cylinder radius a 
Ratio o f  radii a 
Fluid height 
Height /gap a 
Critical Reynolds  number  a 

R1 = 1.25 cm 
R2 = 1.37 cm; R2 = 1.59 cm 
R I / R 2  = 0.912; R~/R2 = 0.786 
h = 9 . 7 c m  
h / L  = 80.83; h / L  = 28.53 
Rc = 135.7; Rc = 84.2 

a The first and second values correspond to a small and large gaps, respectively. 

Table 4 
Values o f  parameters  used for Taylor-Couette flow exper iment  

Tempera ture  
Kinemat ic  viscosity 
Wavelenght  (in water)  
Waist  o f  beam 
Thickness o f  slab a 
Coefficient y 
Transpor t  mean free path 
Brownian correlation t ime 

T = 296 K 
v = 1.11 x 10 -2  cm2/s  
2 = 386.84 nm 
d ~ l m m  
L =  1 . 2 m m ; L =  3 . 4 m m  
7 = 1.67 
l* = 44.97/~m 
z 0 = 734.5/ Is  

a Same meaning as in Table 3. 

Above R -~ 10 Rc further instabilities appear involving additional frequencies 
leading ultimately to weakly turbulent flow [22]. This study does not concern 
R > 10 Ro Our aim is to study the Taylor-Couette instability using the velocity 
gradient measurement. Since the fundamental frequencies (e.g. o91 ) and their 
harmonics of  weak amplitude are small compared to z -1 and zo ~ (we always 
have 6 ogiz < 1 0 - 4 - 1 0  - 3 )  the flow is quasi-stationary at time scales z and z0. 
Our technique allows in principle to determine the critical Reynolds number 
Rc, the wavenumber q (~_ n /L)  of the periodic state, and the R-dependence of  
the velocity gradient within the instability regime. For a laser beam diameter, 
d, smaller than the size of  the Taylor roll (d < L), the spatial periodicity of  
the flow can be measured, whereas for a large beam (d > L) the dependence 
of  IF 2) on R can be determined. The experiment was performed using the 
same set-up as before (see Fig. 1 ) in reflection geometry using as extended 
plane wave source a about 1 mm diameter laser beam. The parameters of  the 
Couette cell are given in Table 3. 

The fluid was suspension A1 at volume fraction 0.1755%. The sample pa- 
rameters used in the experiment are listed in Table 4. 

6 Since o91 is o f  order  o f  I2 (harmonics  are o f  smaller ampli tude [22 ] ) one can write: ogl r _~ ~2 z "~ 
LI2 / k l* R l l2e f f . The highest value of  K2 / I2e f f , corresponding to laminar  regime, is: £2/I2ef f = I. 
We have in this experiment:  kl* ~_ 103 (weak scattering l imit) ,  L / R I  ~- 0.1 - 0.3 (small and 
large gaps),  then we obtain: to l r  < 10 -4 -10  -3.  
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Fig. 9. Reduced effective velocity gradient Feff/['c v e r s u s  the reduced Reynolds number 
e = R / R c -  I using a large beam (d /L  "-~ 1 ). The triangles and squares are the experimen- 
tal data measured at different z values of the incident beam. The straight line (of slope 1.089) 
corresponds to the linear behaviour in the laminar regime (see Fig. 4). 

The measurement of  velocity gradient is obtained by the same procedure 
described above (Section 4.1), i.e. we determine the correlation time ~ = 
x/~/kl*Feff  of C1 (t) (with rc replaced by z), by fitting the experimental 
data with Eq. (7). Since the parameters of  Table 4 entering C1 (t) are the 
same for all experiments, r is the only fitting parameter. 

4.2.1. Small gap L < d: homogeneous effective velocity gradient 
Fig. 9 shows Feff/F~ versus e, where Fc = f2cRI/L = 101.5 s -1 is the 

velocity gradient corresponding to the critical Reynolds number. It clearly 
appears that, above e --- 0, the experimental data deviate from the solid 
curve corresponding to the linear behaviour of the laminar regime. The second 
instability, towards wavy vortex flow, is not visible in this data. This may be 
due to the smallness of additional shear and to the fact that C1 (t) is averaged 
over many periods of the wavy flow [22]. According to the Appendix B, the 
excess shear FTv due to the Taylor vortices can be written as: 

- - 1  = ~v%-Y ( 1 2 )  

Fig. 10 shows FT-v/Pc versus the reduced Taylor number c' = ( T -  Tc)/Tc. 
The experimental data are well described by Eq. (12) (with c~ = 0.13) which 
is consistent with the prediction by Landau [19,24]. A similar conclusion for 
Couette flow has been arrived at by Donnelly [25 ]. It may appear surprising 
that, although Eq. (12), and Eqs. (B.9), (B.11), (B.13) of Appendix B apply 
only for e' << 1, our data suggest that these expressions may be valid even 
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Fig. 10. Reduced velocity gradient of Taylor vortices I'Tv/l"c versus the reduced Taylor number  
e' = T/Tc - 1. The legend is the same than in Fig. 9. The solid curve is the best fit of the 
experimental data to Eq. (12), with c~ = 0.13. 

far above the onset of  the Taylor vortex flow. Torque measurement by Davey 
[24] also suggested such behavior well beyond the range of  applicability of  the 
perturbation theory. From this point of  view, the theory presented in Appendix 
B seems sufficient to describe our data. This provides a new way to determine 
the transition from laminar to Taylor vortex flow. However, a plot of In (l"ef f ) 

versus ln(R) reveals (see Fig. 14) that the same data are also consistent with 
a power law Feff/Fc = (R/Rc) ~, as suggested by Mfiloy and Golburg [26]. 
For the data obtained with a large beam (Fig. 14(a)),  we find ~ -- 1.26 which 
is very close to the findings ~ = 1.25 [26] obtained from the average velocity 
gradients. 

We have also measured Fef  f as  a function of  height z. Fig. 9 shows two 
sets of  experimental data (circles and squares) obtained at different points 
of  height separated by 0.55 mm - L/2. There is no difference between these 
curves, indicating that the effective velocity gradients as measured with a large 
beam are homogeneous. 

4.2.2. Large gap L > d: quasi-local effective velocity gradient 
We have also performed velocity gradient measurements using a much 

smaller beam. Fig. 11 shows Feff/I'c versus ¢, measured at two different 
heights separated by about L/2. In this experiment the critical velocity gra- 
dient is Fc = 8.26 s -1. Like before Fexp deviates at large R from the linear 
behaviour at small R. In addition, as shown in the inset of  Fig. 11, the two 
curves clearly split at the point e _~ 0, indicating that there is a transition 
from the uniform state (circular Couette flow) to a nonuniform state (Taylor 
vortex flow). The analysis of  the e-dependence of  each curve according to the 
procedure used in the case of  small gap leads to the same conclusions as above. 
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Fig. 12. ( a )  l"eff/l'c v e r s u s  z '  = z / 2 L  at fixed R _~ 6 . 5  Rc, 2L being the period of  Taylor vortices. 
Solid curve through the data is the best fit of  experimental data using Eq. (B. 11 ) of  Appendix B 
with: AI = 9.5Fc, B 1 -= 14.39Fc and q = 0r/3 .337)  mm -1.  The origin of  z' is arbitrarly chosen. 
(b) Sketch of  stream lines of  the Taylor-Couette flow with the inner cylinder rotating and the 
outer cylinder at rest. 

In contrast, the z-dependence at given c is fundamentally different, as shown 
in Fig. 12(a) where we plot l 'eff /I" c v e r s u s  z' --- z /2L at fixed R ~- 6.5Rc. It 
clearly appears that l"ef f is  a periodic function with period 2L corresponding 
to the diameter of two Taylor rolls. The best fit (solid curve of Fig. 12(a)) of 
the data to Eq. (B. 11 ) of Appendix B provides a wavenumber q = rolL within 
0.9%, and A1 = 9.5Fc,  B1 = 14.39Fc. The amplitude of this spatial modu- 
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Fig. 13. Shown is the relative amplitude of the periodic part of l 'eff, given as the ratio r (see the 
text), versus e. The solid curve through the data is obtained from best fits of the data used in 
Fig. 11. 

lation of  ~ e f f  appears very large, indicating that velocity gradients strongly 
differ between regions of  outward directed flow and inward directed flow. In 
fact, direct visualisation of  the flow field by video- microscopic observation 
of  a dilute suspension of  plate-like microparticles (kalliroscope) rotated at the 
same frequency inside our couette cell clearly reveals that the overall local 
velocity, and hence the relevant gradient, is highest/lowest in regions of strong 
outward/inward flow respectively, i.e., near separatrices between rolls. Unfor- 
tunately this video method does not provide quantitative measurement of the 
velocity gradient. Our results (Fig. 12) are in agreement with the velocity 
gradient measurements [26] obtained from single light scattering, with respect 
to both amplitude and period of the spatial modulation. 

The transition to TVF is also detected by measuring the ratio of ]C'ef f a t  two 
points separated in height by about L/2 as a function of Reynolds number. In 
Fig. 13 we plot the relative amplitude of  the periodic part of  1-'elf, given as 
r = (rl - 1 ) / ( r l  + I) with rl = l"eff(Z])/1-'eff(Zt2 ), versus c, for z~ = 0.52 
and z~ = 0,23 corresponding to the two black points indicated in Fig. 12(a). 
Like in Fig. 10, we find that the ratio r becomes different from zero near 

= 0. Its sudden increase for e > 0 is the signature of  the transition to TVF 
according to Landau's law [ 19,24] (solid curve). Alternatively, our data using 
a small beam can be fitted very well to a power law, as above, but the ~ value 
now depends on the vertical position of  the beam (see Figs. 14(b) and (c)).  

Thus, by the simple velocity gradient measurement, it is possible to determine 
not only the threshold of  the Taylor-Couette instability but also to study the 
additional velocity components associated with the Taylor vortices on a quasi- 
local scale. In addition, it appears possible to determine the wavenumber of  
the Taylor rolls from 1-'e f f ,  despite of  the fact that the rolls are not visible by 
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Fig. 14. Log-Log plot shows the dependence of the effective velocity gradient on the Reynolds 
number. 
Large beam (a): Open triangles and squares correspond to experimental data of Fig. 9 .  The solid 
line, with the slope 5 = 1.26, is the best linear fit to the data. 
Small beam: Open circles and squares for (b) and (c), respectively, correspond to experimental 
data of Fig. 11. The best linear fits (solid lines) have slopes 5 = 1.64 and 5 = 1.19 for (b) and 
(e), respectively. 

eye, as the colloidal fluid remains essentially homogeneous. 

5. Conclusion 

We have shown experimentally, that dynamic multiple light scattering ex- 
periments provide an accurate and non-invasive method to measure velocity 
gradients. Analysis of  the time autocorrelation function C~ (t) using a simple 
model provides the shear correlation time rcx 1/kl*Feff.  This model could be 
refined to incorporate skin layer effects which, however, turn out to be neg- 
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ligible in our experiments. This technique has been extended into the regime 
of hydrodynamic instabilities. Indeed, the critical Reynolds number Rc and 
wavenumber q of the Taylor-Couette instability was measured by this way, 
despite of the fact that the Taylor vortices are not visible by eye, because of 
the homogeneous turbidity of the fluid. The dependence of the measured shear 
gradient Fef f on the Reynolds number is in agreement with Landau's model. 
It appears interesting to extend this technique to turbulent flow, where shear 
gradients could be probed at the (experimentally adjustable) length scale of 
the transport mean free path l*. 
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Appendix A 

The dephasing of light originating from the change of the diffusion path 
length caused by scatterers which follow the flow is given by [3,8,11 ]: 

n 

AOn(t)  = k t  Z e ~ .  [ V ( r , ) - V ( r ~ + l ) ]  (A.1) 
t/-----I 

where e,  is the emergent unit vector from the u th scattering joining r,  and 
r,+~ ((Ir, - r , + l [ )  = l by definition), and V(r , )  is the velocity of the l) th 

scatterer. According to assumptions /) and ii) of Section 2, it has been shown 
[8] that Eq. (A.1) can be rewritten as: 

n 

Aq~n(t) = - k i t  y ~ y ~ A i y ( u ) a i j ( r ~ ) ;  i , j  = x , y , z  (A.2) 
u = l  i,j 

where A i j ( u )  = eui e u j  is the random scattering symmetric tensor which de- 
pends only upon the u th scattering angles, and lyij is the strain tensor. For 
incompressible fluids ( div V = 0 ), the computation of Cl (t) requires to cal- 
culate fluctuations (A~Z(t)) of the dephasing of light. We then consider the 
quantity: 

n 

IA 2.(t)) = ( k t t )  2 (1 + 
u,u I = 1 

x IZZAij(y)Akl(I/t)(aij(ru)ffkl(rut))}l, i,j k,l (A.3) 
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where .-= denotes the average upon scattering angles whereas (...) indicates 
the average obtained from the weighting over the cloud of diffusion paths 
[7,8]. When the scattering is anisotropic (Mie scatterers), correlations between 
scattering vectors can be written as: 

e..e.,  e-7 (c-~O) I"-~'1 = (A.4) 

where 0 is the angle between e ,  and e,,. e ~ are averaged over the unit sphere 
and: 

cos0 = f °  F ( O ) cos0 sin O d O 
f o E ( O )  sinOdO (A.5) 

F (0) being the form factor[ 15]. Thus, the t enso r  Aij (u) Akt (u') can be written 
as :  

Aij(U) Akl(U, ) _ ciij(ikl (CO-S-0) I~-~'l 
9 + 15 

3ij (~kl "4- ~ik (~jl -~ Oil gjk ( A . 6 )  

Replacing (A.6) into (A.3), we have: 

(A~b2(t)} - 4(kl t)  2 ~ Z ( a ~ ( r ~ ) )  
15 

u = l  i,j 

× l +  c%70 j"-"'j 
V' =V-l- 1 

For n >> 1, Eq. (A.7) can be rewritten as: 

4(klt)2 Z { a Z ( r ~ ) )  1 +  Z 2 ( t ) )  _ 

u = l  i,j u ' = l  

15 1 - cos0 (a2(r~)) 
p=l[ 

(A.7) 

(A.8) 

Rescaling ul = u' l* and nl = n'l*, where u* and n* are, respectively, 
the index and the total number of independent scattering events, and l* = 
l /(1 - c o s 0 )  being the transport mean free path, (A.8) becomes: 

Eq. (A.9) obtained above is exactly the same than the expression obtained for 
pointlike scatterers provided that l is everywhere replaced by l*. Since aij (r~.) 
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is now evaluated at the scale /*, the expression of (A¢ 2 (t)) is therefore only 
valid for the velocity field which varies slowly at the scale l*. In this case, the 
dephasing of light for Mie scatterers can be approximated by: 

n* 

A¢~(t) ~ - k t  ~_, e~.. [ V ( r , . ) - V ( r , . + l ) ]  
v * = l  

(A.lO) 

with ([r~. - r v . + l l )  = l* by definition. 

Appendix B 

In this appendix we derive the expression of the effective velocity gradient 
Fe f  f for flow above the Taylor-Couette instability, l"ef f is defined by the 
relation: 

Fe~ f = 2 ~--~(a 2) (B.1) 
ij 

where i, j = x,  y, z ,  ffij  is the strain tensor of the velocity field and the average 
(-..), representing the integral of Eq. (3) of  the main text, is obtained from 
the density distribution of diffusion paths in reflection p, (r) [7,8]. 

The control parameter for the Taylor-Couette instability with the outer 
cylinder at rest is the Taylor number T, which for L << (R2 d- R1)/2  [18] is 
related to the Reynolds number R by: 

4L 2 R2 ,.~ 2L R2 
T - R2 _ R----~ = R1 (B.2) 

The critical Taylor number is Tc = 3390 [18]. In the vicinity of Tc, the 
velocity field can be described as: 

VTVF (r, t) = V c c  F (r) + Vl (r, t) (B.3) 

where VCCF (r) and VrvF (r, t) are velocity fields for Circular Couette Flow and 
Taylor Vortex Flow, and V1 (r, t) is the perturbative velocity field. Because of 
the periodicity of TVF along the axial direction, the linear theory gives [ 18,24 ] 
(0 < x < L): 

A(t)  u ( x )  cos(qz) 

Vl ( r , t )  = A ( t ) v ( x )  cos(qz) (B.4) 

A( t )  w ( x )  sin(qz) 

where u, v and w, the eigenfunctions of the velocity field, are suitably nor- 
malized, q = 7r/L (with L being also the size of a Taylor roll) is the critical 
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wavenumber and A(t )  is the complex amplitude of Taylor vortices in flow 
pattern. The experimental evidence 7 suggests that for T > Tc, the flow is in 
the steady state, so that the amplitude of vortices considered here is their 
equilibrium amplitude Ae given by Landau's law [19,24]: 

Ae = const. × v/-~7; ~, T -  Tc = Tc (B.5) 

Thus, the quasi-stationary velocity field of TVF can be written as: 

Ae u(x)  cos(qz) 

V ( x , y , z )  = F x  + A e v ( x )  cos(qz) (B.6) 

Aezo(x)  sin (qz) 

where F is the velocity gradient of non perturbed circular Couette flow. If we 
assume that v scales like F L  the scale for u is u F L / F L  2 according to the 
(linearized) Navier-Stokes equations such v /u  scales like the Reynolds number 
FLZ/u = R. The condition of the incompressible fluid leads to the same scale 
for u and w. According to Eq. (B.1) and Eq. (B.6), we have: 

Fe2ff = 1 "2 + alAe1"(cos(qz)) + a2A2(cos2(qz)) 

+ a3A2(sin 2 (qz)) (B.7) 

where the constant ag are the mean values of the square of strain tensor 
averaged over x variable only. The comparison between the size L of the 
Taylor rolls and the waist d of the incident laser beam allows us to distinguish 
small and large gaps: 
i) Small gap, large beam: L < d 

In this case the light paths are smeared out over more than one Taylor 
vortex so that the average of the sine and cosine of Eq. (B.7) are numbers. 
l'ef f have lost information about the periodic pattern of TVF. Consequently, 
1"efT does not depend on the variable z, and is the same everywhere along the 
axis direction. Since light paths visit more than one of Taylor vortex, one have 
on average: (cos(qz)) ~_ 0. With use of Eq. (B.5) we may write: 

a2AZ(cos 2 (qz)) + a3Ae2(sin 2 (qz)) = Fzc~e ' (B.8) 

being a constant, and from Eqs. (B.7)-(B.8), we then obtain: 

l"eff(~ t) = F~/1 + ae'; c' >_ 0 (B.9) 

ii) Large gap, small beam: L > d 

7 see footnote 6. 
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Now, the main light paths are confined within a small region of space 
compared to L, so that velocity gradients are roughly constant at the scale 
d. One can then reasonably replace in Eq. (B.7), (sin(. . .))  and (cos(. . .))  by 
sin(-. .)  and cos (-. .) ,  respectively. We have: 

C2f f  (Z, 6.') = F 2 Jr- a l A e F c o s ( q z )  + a2A 2 c o s 2 ( q z )  

+a3A 2 sin 2 (qz) (B. 10) 

Furthermore, we know that: al = (Oxv), and a2,a3 ~- ((Oxu) 2 + (Oxv) 2 + 
(Oxw)2); we have then: [allF/a2 ~ [VccFI/[VI[ > 1, which implies that the 
leading oscillating term of (B.10) is the factor of  cos(qz).  Hence l"ef f is a 
periodic function with period 27t/q = 2L which has the form: 

Fef f (z ,e ' )  = Al(e ' )  c o s [ q ( z -  z0)] + Bi(e') (B. 11) 

where functions A1 and B1 are related to ai. The e'-dependence of 1-'ef f is 
obtained as above: 

alAe cos(qz) = Fill (z)V'~ I (B.12) 

a2A 2 cos2(qz) + a3 A2 sin2(qz) = F2f l2 (Z )~  t J 
ill(Z) and fiE(Z) ([fll[ > f12) are periodic functions with periods 2L and L, 
respectively. The effective velocity gradient becomes now: 

Fef f (z ,e ' )  = FV/1 + f11(z) v'~7 + ,Se(z)e'; ~ ' >0  (B. 13) 
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