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Motion of particles in optically dense media gives rise to temporal fluc-
tuations in the intensity of multiply scattered light. We show that use-
ful information about the dynamics of the scatterers can be obtained
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from measurements of the temporal autocorrelation functions of these
fluctuations in the multiply scattered light. We develop a phenomeno-
logical theory, which models the transport of light as a random walk
between scatterers, and obtain explicit expressions for the autocorrela-
tion functions for several experimental geometries. These expressions
are compared with experiments probing the dynamics of colloidal sus-
pensions and are shown to be in excellent agreement with the data. The
dependence of the autocorrelation functions on the experimental geom-
etry provides a powerful means of exploring the particle dynamics over
vastly different length and time scales. Thus, this technique extends the
conventional single scattering technique of Dynamic Light Scattering
to the multiple scattering regime. We call this new technique Diffusing
Wave Spectroscopy (DWS). We illustrate the power of DWS by apply-
ing it to measure the particle size in concentrated suspensions and to
study the diffusion of particles in porous media and the flow of particles
under shear. In addition, we show that DWS can be extended to study
the dynamics of interacting colloids by including the consequences of
the correlations between the particle positions and velocities. DWS
can also be used to study the nature of the transport of light in disor-
dered systems and, in particular, the limitations of using a continuum
diffusion approximation. To exploit this, we show that other quan-
tities, such as the angular dependence of the coherent backscattering
cone and the absorption dependence of the incoherent backscattering
intensity, depend on the distribution of light paths through the sample
in the same way as the temporal autocorrelation functions obtained in
backscattering.
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1. INTRODUCTION

A characteristic feature of the scattering of light from any ran-
dom medium is the existence of a very strong spatial modulation of the
scattered intensity called the speckle pattern. The speckles are due to
the addition of the electric fields, with random phases, scattered from
different illuminated points. This feature is characteristic not only of
light, but also of any scattering phenomenon that can be described in
terms of waves. It also results from multiply scattered light just as it
does from singly scattered light. If the scattering medium is perfectly
stationary, the speckle pattern will also be stationary. By contrast, if
the positions of the scatterers in the medium change with time, the
speckle pattern will also evolve with time. Therefore, the intensity of
the scattered light at any point will fluctuate. Typically, the motion of
the scatterers will occur on a time scale that is much longer than any
propagation time of the light through the medium. Thus, the fluctu-
ations in the scattered light intensity will reflect the dynamics of the
scatterers.

In this chapter, we discuss the analysis of these temporal fluc-
tuations of the intensity for the case of multiply scattered light, and
determine the temporal autocorrelation function of the scattered in-
tensity. We present a heuristic approach to derive the functional form
of this autocorrelation function. This approach exploits the diffusion
approximation to describe the transport of light in the strongly mul-
tiple scattering regime. The expressions derived are compared with
experiment for several important geometries and are shown to be in
remarkably good agreement. Furthermore, we show that useful infor-
mation about the dynamics of the scattering medium can be recovered
from our expressions for the autocorrelation functions.

The analysis of the temporal fluctuations of the scattered inten-
sity in the strictly single scattering regime is a well developed and
extremely powerful spectroscopy which is variously called quasielastic
light scattering (QELS), dynamic light scattering, or photon correlation
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spectroscopy.!'? In this technique, knowledge of the scattering vector,
q, is crucial as it sets the length scale over which particle motion is
probed. Extensions of QELS to the multiple scattering regime have
proved extremely difficult and have been limited essentially to only dou-
bly scattered light.® In turn, this has severely limited the application of
QELS to the singly scattering regime. By contrast, in the very strong
multiple scattering regime, it is possible to exploit the diffusive nature
of the transport of light and again obtain useful information about the
particle dynamics.?®® We call this new technique diffusing wave spec-
troscopy (DWS)."8 In this chapter, we demonstrate the potential of
DWS both in extending QELS to the multiple scattering regime and in
studying the particle dynamics of interacting systems.

The analysis of the temporal intensity fluctuations also provides
a unique probe of the nature of transport of light in strongly scatter-
ing media, complementing the many studies of the static properties
of multiply scattered light (see the review by Lagendijk et al. in this
volume).?*® To make this explicit, we show that there exists a direct
analogy between the time dependence of the temporal autocorrelation
function of the backscattered intensity and the angular dependence of
the coherent enhancement of the static backscattered intensity.!! Phys-
ically this arises from the fact that both measurements probe the same
type of sum over light diffusion paths. In the case of the enhanced
backscattering, these paths contribute to the increase of the scattered
intensity, while in the case of the dynamics, they contribute to the decay
of the autocorrelation function. We can, therefore, use the autocorrela-
tion function as a sensitive experimental measure of the light diffusion
paths. In particular, it provides a means of probing the limitations of
the continuum nature of the diffusion approximation in describing the
contributions of the very short scattering paths.

The temporal autocorrelation function of the intensity in one
or more speckles is the most convenient quantitative measure of the
dynamics of the scattered light. In the single scattering regime, the
characteristic time dependence of the fluctuations is determined by the
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particle motion over the length scale set by ¢~!, where the wavevector

is ¢ = (47n/X)sin(8/2), with X the wavelength, n the index of refrac-
tion of the medium, and @ the scattering angle. Thus, particle motion is
probed over length scales of A and larger. By contrast, in the multiple
scattering regime, the characteristic time dependence is determined by
the cumulative effect of many scattering events and, thus, the charac-
teristic time scales are much faster. Consequently, particle motion is
probed over length scales much smaller than A.

This is illustrated in Fig. 1, where we show intensity autocorrela-
tion functions from suspensions of 0.497-um diameter spheres at vastly
different concentrations. The data for Fig. 1(a) are obtained at a scat-
tering angle of @ = 90° from an essentially transparent suspension of
volume fraction ¢ = 10~%, which is in the single scattering regime.
It is a single exponential, reflecting only one characteristic time scale
(Dg?)~!, where D is the particle diffusion coefficient. By contrast, the
data in Fig. 1(b) are obtained in a backscattering geometry from a
suspension with ¢ = 0.01 which is in the strongly multiple scattering
regime, and therefore appears white. It is both highly non-exponential
and has a substantially faster initial decay than the single scattering
data. However, the volume fraction of the suspension is still sufficiently
low that the diffusion coefficient of the particles is unchanged from the
dilute limit. Thus, the more rapid initial decay and non-exponential
shape must arise from the much larger number of scattering events. The
data for Fig. 1(c) are obtained for the same concentration, ¢ = 0.01, but
from light transmitted through a sample of thickness, L = 2mm. Its de-
cay is even more rapid, although more nearly exponential. This reflects
a larger average number of scattering events due to the more important
contributions of longer paths to the transmitted light as compared to
the backscattered light.

This chapter is organized as follows: In the next section, we dis-
cuss the extension of the traditional approach for QELS to the multiple
scattering regime. We calculate the intensity autocorrelation function
within the diffusion approximation for the transport of light and then
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Fig. 1. Temporal intensity autocorrelation functions from aqueous suspen-
sions of 0.497-um-diameter polystyrene spheres at different volume fractions,
¢, and for different scattering geometries: (a) single scattering, ¢ = 1078,
o = 90°; {(b) multiple scattering, ¢ = 0.01, backscattering from a thick
sample; (¢) multiple scattering, ¢ = 0.01, transmission through a 2-mm-thick
sample.

obtain expli¢it functional forms of the complete intensity autocorrela-
tion function for several important experimental geometries. The pre-
dictions are compared to the experimental results for transmission and
backscattering geometries. In the next section, we demonstrate how
DWS can provide a sensitive new probe of the nature of the trans-
port of light in the multiple scattering regime by comparing the short-
time behavior of the temporal autocorrelation functions to the angular
dependence of the static coherent backscattering and the absorption
dependence of the incoherent backscattered intensity. Finally, we illus-
trate the utility of DWS for studying the dynamics of particles in the
multiple scattering regime.
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2. THEORY

Two theoretical approaches have been used to calculate the tem-
poral autocorrelation function of multiply scattered light. One ap-
proach is to start from the wave equation for the propagation of light
and to use a diagrammatic description of the scattering from the ran-
dom fluctuations in the dielectric constant. The consequences of motion
of the scatterers was first considered by Golubentsev'? and the actual
temporal correlation functions were calculated by Stephen.® By con-
strast, the second approach considers the diffusive transport of individ-
ual photons directly, rather than starting from the wave equation.*%78
The path of each photon is determined by random, multiple scattering
from a sequence of particles. The loss of correlations due to the motion
of scatterers is calculated for each light path. The contributions of all
paths, appropriately weighted, are then summed to obtain the temporal
autocorrelation function.

In this chapter, we adopt the second approach. It is mathe-
matically simpler and physically more transparent than the diagram-
matic methods. It can also be more readily generalized to larger parti-
cles which scatter light anisotropically and are typical of media which
exhibit multiple scattering of light. The key to this approach is to
model the transport of each photon through the sample as a random
walk. This is done within the diffusion approximation, which allows the
weighting of each path to be determined, and simplifies the calculation
of the temporal autocorrelation.

We begin by considering a single light path and calculate its con-
tribution to the decay of the autocorrelation function. For simplicity
we consider independent spherical scatterers of uniform size undergoing
Brownian motion. The fluctuating phase of the multiply scattered light
caused by the motion of all the particles in the path leads to the decay
of the autocorrelation function which, for a path of n scattering events,
is given by

G (1) = (EM*(0)E™ (1)) = (|E™ (0)[H)e~ 2™ () . (1)
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Here E(*) is the contribution to the scattered electric field from a path
of order n and A¢(")(r) is the total change in its phase due to the
motion of all n scatterers,

AG™ (r) = Z q - Ari(r), )

where q; is the scattering wavevector (proportional to the momentum
transfer) of the ¢th scattering event and Ar;(r) = r;(r) — r;(0) is the
change in position of the sth scattering particle in a time 7. Assuming
that the fields belonging to different paths add incoherently, the aver-
age contribution of all paths of order n to the autocorrelation function

G{"(r) = Io P(n) <fI "> &)

=1

becomes

where P(n) is the fraction of the total scattered intensity I, in the nth
order paths. The total field autocorrelation function G,(r) is obtained
by summing over n,

Gl(T) =1 Z P(n) <H e—t'q;-Ar.-(r)> L (4)

This sum can be evaluated directly by computer simulation.!? While
this approach can yield accurate results, it is useful to have analytic
expressions for G, (7). To this end, we assume that the dominant con-
tribution to Eq. (4) comes from light paths with many scattering events,
that is, large n. For large n, the transport of light through a sample
can be accurately described within the diffusion approximation. This,
in turn, allows P(n) and the averages in Eq. (4) to be easily evaluated.

For large n, we can relax the condition that the sum of the inter-
mediate scattering vectors must equal the difference between the in-
cident and exiting wavevectors, X;q; = k, — ky, and assume that
successive scattering events are uncorrelated. This corresponds to a
random distribution of the ¢;. Then, for independent particles, the
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right hand side of Eq. (3) becomes P(n){exp[—iq - Ar(r)])* where ()
denotes averages over both the particle motion Ar(r) and the distribu-
tion of wavevectors q. For Brownian motion, the distribution of Ar(r)
is Gaussian and the average over particle motion is readily performed
yielding

G\™) (r) = LP(n) (e " /6)n (5)

where (Ar?(7)) = 6Dr and now (), denotes the average over g. Thus,
Eq. (5) implies that the relaxation rate will be large for paths with large
n, independent of the average over g.

The average over ¢ can be performed explicitly for point-like scat-

terers, which scatter light isotropically; this gives®*?
n T —4r /T "
¢ (1) = LP() [ (1-e4)]" (6)

where 7o = (Dk2)~*. However, for larger particles which scatter light
anisotropically, the average over q is more difficult to perform. Thus,
we restrict ourselves to small delay times 7 < 7o and retain only the

first term in a cumulant expansion,*
(277 Y' = (1= DPr)y = (1= D(P)r) = P (1)
q

We can compare this more general approximation with the exact ex-

pression, Eq. (8), for point-like scatterers by evaluating (¢?) for a flat

(q2)=/qsdq//qdq=2k§

G\ (r) = L P(n)e” /7" (8)

distribution
which gives

Expanding the exact expression in Eq. 6 gives

ng) (7,) — IOP(n)e—2nr/ro[1—1/3(r/ro)+0(r/-ro)3]

so that the cumulant expansion gives the correct results to leading or-
der in 7/7y. Furthermore, the effective decay time is 79 /2n, so for large




322 D. J. Pine et al.

n,G (1") {7) decays essentially to zero before the higher order terms make
a significant contribution. Nevertheless, for large 7 /7y the cumulant ex-
pansion fails since the exact expression in Eq. (6) decays as a power law,
(r/70)™™, due to the contribution of scattering with small q. However,
at these long times low order scattering events dominate. For small n,
the distribution of q; is not random but must satisfy the condition that
¥;q9; = k, — ko. This will modify the average in Eq. (6) and could
have the effect of at least partially offsetting the error introduced by
the cumulant expansion.*

The approximate expression can be easily generalized to treat the
anisotropic scatterers typically used in experiments. Here, the single
particle scattering intensity is peaked in the forward direction and (g?)
is less than 2k2. Physically, this means that more scattering events
will be required to randomize the direction of light propagation. The
length scale over which this randomization occurs is the transport mean
free path, I* (Refs. 15,16). For anisotropic scatterers, I* is generally
greater than the scattering mean free path, [, the mean distance between
scattering events. It is the transport mean free path which is related to
the diffusion coefficient for multiply scattered light, D,‘: cl* /3, where
¢ is the speed of light in the medium.

We estimate {* by analogy to the calculation of the effective length
of a statistical segment in semiflexible polymers.}” Thus, we sum the
projections of all steps of length [ in a long path onto the direction of
the first step. Then

I = lZ(cos 9)*
=1

where {cosf) is the average angle between successive steps. For large
n, this becomes

I"=1/(1-{cos®)) .

Since (1 — cos8) = (2sin?(0/2)) = 2(¢?)/(2ko)?, we find

2(¢*)/(2ko)? = 1/1I" .
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Therefore both {¢g*) and !* are simply obtained by averaging over the
angular dependence of the form factor F(q) of the scatterers

@) =285 = [ ¢P@da/ [ Pla)da. ©)

It follows from Eqgs. (5), (7}, and (9) that for anisotropic scatterers, the
contribution of an nth order scattering path is

G{™ (r) = L,P(n)e=(3r/r)0/I0n (10)

We note that the accuracy of Eq. (10) improves as the scattering
becomes more anisotropic. The second cumulant of (e™P q") is
e=3(P7)Ue ) =1a*)’] For typical form factors, F(q), we expect (¢*) to
scale as (¢2)? so that the cumulant expansion in Eq. (7) should be valid
to leading order in D{¢?)r =~ (r/r)({/1*). Thus, for large scatterers,
where {* > [, the range of validity of Eq. (10) may extend up to r ~ 7.

The total field autocorrelation function G, (r) is obtained by sum-
ming over scattering paths of all orders

G]. (T) = IO Z P(n)e"(z"/fo)(l/l')n )

n=1

If we rescale n by defining n* = (I/I*)n, the exponential term in this
equation is identical to Eq. (8) for isotropic scatterers. Furthermore,
in the diffusion approximation, P(n), the fraction of photons which
travel a path of length s = nl through the scattering medium, is a
function of n* rather than n, because the characteristic length scale of
the light propagation is the transport mean free path, {*, rather than
the scattering mean free path, I. As a result, in this approximation,

Gi(r)=1I, Y P(n*)e~@r/mon" (11)
n*=1

This reflects a renormalization of the mean free path for anisotropic
scatterers, so that the light may be viewed as undergoing an isotropic
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random walk with an average step length [*. Finally, we note that the
decay rate of a given path depends critically on its length. Long paths
reflect the aggregate contribution of many scattering events. Thus,
each particle need move only a small distance for the total path length
to change by a wavelength. This occurs in a short time, leading to a
rapid decay rate. By contrast, short paths reflect the contribution of
a small number of scattering events. Thus, each particle must undergo
substantial motion for the total path length to change by a wavelength.
This takes a longer time, leading to a slower decay.

The key to the solution of Eq. (11) is the determination of P(n*).
This task is greatly simplified if we restrict ourselves to the continuum
limit. Thus, we approximate the summation over n* by an integral over
the path lengths, s = n*l*, and obtain

Gi(r)=(EQ)E*(r)) =1, / P(s)e_m’/"’)’/" ds . (12)

In this case, P(s) is the fraction of photons which travel a path of
length s through the scattering medium. Now we can use the diffusion
approximation to describe the random walk of the light, and P(s) can
be obtained from the solution of the diffusion equation for the appro-
priate experimental geometry. We emphasize, however, that the con-
tinuum approximation to the discrete scattering events will break down
whenever there are significant contributions from short light paths.

Physically, we can regard P(s) as giving the distribution of path
lengths of the light diffusing through the sample. In general, P(s) de-
pends on geometrical factors such as the size and shape of the sample
cell and incident light beam. As we shall see, P(s) can be determined
for many different scattering geometries of experimental interest. First,
however, it is instructive to consider the results for a case where the
physics and mathematics are simple, but the experiment is quite diffi-
cult.

We consider a scattering medium of infinite extent and introduce
the diffusing light at a point inside the medium. The light is detected
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at a point a distance r away. If r is much larger than [*, then P(s) is
given by the usual Gaussian distribution which results from the central
limit theorem,

3 3/2 ’/ po3 3 3/2 Jaol
— -3r? jan*1® = —3r% /401"
P(s) = (47rn*l*2) ¢ (47rsl*) ¢ » (13)

where n* = s/I* is the number of steps.!® In Fig. 2 we show a plot of

Eq. (13) as a function of path length s. As expected, P(s) reaches a
maximum when $,,., & (7/1*)%1* /2, which corresponds to a random
walk with n* = (7/1*)? /2 steps. For very short paths P(s) — 0, since
the light must diffuse a distance r before it can be detected at all.
Thus the relative probability of having random walks with path lengths
8 & 8yax 18 small. For long paths, s > s,,ax, P(s) decays very slowly

according to a power law, s~3/2,

80 T Ll T

60

20

0
0.0 1.0 2.0 3.0 4.0

s (cm)

Fig. 2. P(8) vs s: The fraction of photons which travel a distance s between
a point source and a point detector separaved by a distance r in an infinite
random medium with strong multiple scattering. (Eq. (13), with * = 100
pm and r=1 mm).

Using this simple form for the distribution of path lengths we can
combine Eqgs. (12) and (13) and obtain an expression for the temporal
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autocorrelation function

b 3 3/2 2 * *
Gi(r) = IO/O (‘ml*) e (4= ar/ro)e/F) g . (14)

Some insight into the behavior of G, (r) as a function of delay time can
be obtained using the method of steepest descents. Thus, the dominant
contribution to the integral occurs when the argument of the exponen-
tial is at its maximum value,

o] ( 3r2 27 s> 3r2 27

3s \ dsl* 1 IF) T 4l pl*

s —r\/g’—r2
e 8r

Thus, the length, s,, of the paths which dominate the correlation func-

giving

tion decreases with increasing delay time. Performing the integral in
Eq. (14), we obtain an explicit expression for the autocorrelation func-
tion,

Gi(r) x PELARAVALIAL I

Since for 7 — 0, 8G;/dr — —oo, at the shortest delay times, the au-
tocorrelation function decays very quickly. This reflects the divergence
of 54 as 1 — 0. The square root dependence arises from the form of
the exponential cut-off of the short paths. However, the singularity at
short times results from the fact that the contributions of P(s) to the
autocorrelation function are only a slowly decaying function of path
length (s~%/2). This singularity is a characteristic feature of any mul-
tiple scattering geometry which contains significant contributions from

infinitely long paths, where P(s) ~ s~%/?

. As discussed below, this sin-
gularity is observed in backscattering from a semi-infinite sample, but
not in transmission through a finite slab.

To describe experimental data, we must solve Eq. (12) to obtain

the autocorrelation function for physically realizable geometries, where
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the mathematics are more complex but the experiment is simpler. Re-
stricting ourselves to the continuum approximation, P(s) can be ob-
tained from the solution of the diffusion equation for the appropriate
geometry. In fact we can further simplify our task by extending the
limits of the integration in Eq. (12) from s = 0 to s = co, which makes
G1(r) a Laplace transform of P(s). Then we can solve the Laplace
transform of the diffusion equation to obtain the desired autocorrela-
tion function directly. However, we again emphasize the limitations
in this approach. Extending the lower bound of the integral to s = 0
may allow unphysically short paths to contribute to the autocorrelation
function, depending on the scattering geometry. Furthermore, the short
paths cannot be properly treated within the continuum approximation
inherent in the diffusion equation. Thus, this approach is strictly valid
only for long paths, where the diffusion approximation is a good descrip-
tion of the transport of light. Nevertheless, the great simplicity afforded
by this approach makes it worthwhile to try to extend its applicability
to more general geometries.

Physical insight into the method for determining P(s) by solving
the diffusion equation can be obtained by considering a simple experi-
ment. An instantaneous pulse of light is incident on the face of a sample
which multiply scatters the light. The scattered photons will execute a
random walk until they either escape the sample or arrive at the point
ry on the boundary where the light is detected. The intensity of light
that reaches r; is zero at t = 0, then increases to a maximum, and
finally decreases back to zero at long times when all the photons have
left the sample. At time t, the photons arriving at point r, are those
that have traveled a path length s = ¢t through the sample. Thus, the
time dependence of the intensity of light arriving at point r, is directly
proportional to P(s). The details of this time dependence, and hence
the shape of P(s), will depend on the experimental geometry.

To obtain P(s) for a given experimental geometry, we must use
the diffusion equation to determine the dispersion induced in a delta
function pulse as it traverses the scattering medium. To accomplish
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this, we denote the density of diffusing photons within the medium by
U(r). Then, the light detected at the point ry at the boundary is the
outward flux of diffusing light and is given by the normal derivative of
U evaluated at ry,

P(s) x -2 -VU|,, , (15)

where 1 is the unit normal vector, directed outward. It is the intensity
of diffusing photons that satisfies the diffusion equation,

%’ti = DV | (16)
where D; = cl* /3 is the diffusion coefficient for light. The geometry for
the solution of the diffusion equation will depend on the experiment.
As initial conditions for the diffusion equation, we take an instanta-
neous pulse at t = 0, with a geometry suitable for the experiment. The
boundary conditions must ensure that there is no flux of diffusing pho-
tons entering the sample from the boundaries. This is achieved with
the boundary conditions!®

U-IrE-VU=0, | (17)

We use the transformation of variables, s = ct, to relate the time depen-
dence to the required distribution in path lengths. We can then solve
the Laplace transform of the diffusion equation, take its normal deriva-
tive at the surface and obtain the autocorrelation function directly.

Finally, to compare to experiment, we note that the electric field
autocorrelation functions discussed above are usually not measured di-
rectly. Instead, one typically measures the intensity (or homodyne)
autocorrelation function, (I(r)I(0))/(I)?, where I is the intensity of
the scattered light. For most systems of experimental interest, the in-
tensity autocorrelation function is simply related to the electric field
autocorrelation function by

(I(r)1(0))/{D)* = 1+ f(A)ga(r) ,
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where f(A) is a function determined by the collection optics,>? g,(7)
is related to g; (r) by the Siegert relation,

92(r) = lgs (r)?

and g¢,(r) is the normalized field autocorrelation function, g,(r) =
(E(r)E*(0))/(|E|?). The validity of the Siegert relation in the multiple
scattering regime has been verified experimentally for 7 = 0, and no ev-
idence for non-Gaussian statistics is found.!® Experimental results are
generally reported as normalized homodyne autocorrelation functions,

92(7).

3. TRANSMISSION

The first experimental geometry we consider is transmission
through a slab of thickness L and infinite extent.®” For the transmission
geometry, the detected light must diffuse a distance L across the sam-
ple, as illustrated in the top of Fig. 3. This introduces a characteristic
path length, s, = n.l = n}l*, where n: = (L/I*)? is the mean number
of steps for a random walk of end-to-end distance L and average step
length {*. The consequences of this characteristic length can be seen di-
rectly in the dispersion induced in a delta function pulse upon traversal
of a sample with L = 1 mm and [* = 100 um, illustrated in the bottom
of Fig. 3. The intensity is peaked sharply and then decays rapidly with
increasing time. Since this time dependence is proportional to P(s),
this characteristic path length will be directly reflected in the autocor-
relation function resulting in a characteristic decay time. Physically,
this corresponds to the time taken for the characteristic path length
to change by ~ X, so that the total phase A¢(®") ~ 1. Thus, we can
estimate the typical distance an individual particle has moved from the
condition

(a8 mmetet)art) » (Z0) (1) (ar) w1
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Fig. 3. Transmission of a short pulse of light through a multiply scattering
medium: (top) Experimental geometry showing light paths which exit at a
point directly opposite the input pulse. Other paths are present, but not
shown; (bottom) Time-dependent output response to 5(t) input pulse (L =1
mm, I* = 100 um, ¢ = 2 x 10'% cm/s).

This gives Ar.y,, & Al*/9L. Since I*/L <« 1, the typical length scale
over which particle motion is probed by DWS in transmission is much
smaller than the wavelength. This reflects the fact that the decay of
the autocorrelation function is due to the cumulative effect of many
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scattering events, so that the contribution of individual particles to the
total decay is small. This 18 in striking contrast to ordinary dynamaic
light scattering (QELS) where by varying g, length scales greater than or
equal to the wavelength are probed. Furthermore, an important feature
of the transmission geometry in DWS is that the length scale over which
particle motion is probed can be controlled experimentally by varying
the sample thickness L. Similarly, the time scale over which motion is
probed using DWS can be controlled by varying the sample thickness.
This time scale is 7o (I* /L)?, and is much shorter than the time scales
probed using QELS, which are typically longer than 7,. Thus, DWS
provides a useful and convenient means for extending the length and
time scales over which particle motion can be measured using dynamic
light scattering techniques.

Autocorrelation functions measured in transmission are shown in
Fig. 4 (Ref. 7). The sample consisted of 0.497 pm diameter spheres
at a volume fraction of ¢ = 0.01 in a 2.0 mm thick cuvette. There
is no unscattered light transmitted through the sample, insuring that
the strong multiple scattering limit is achieved. The data in the lower
curve were obtained when the sample was illuminated uniformly by a
l-cm diameter beam from a 488 nm argon ion laser. Imaging optics
collected the transmitted light from a 50 um spot on the opposite side
of the sample from a point near the center of the illuminated area. For
comparison, the upper curve shows data obtained when the incident
beam was focused to a point on one side of the sample and transmitted
light was collected from a point on axis with the incident spot. These
data clearly decay somewhat more slowly than the data obtained with
an extended source illumination. Physically, this difference reflects the
fact that for the extended source there is a larger contribution from long
paths, resulting in a somewhat faster decay than for the point source.

To quantitatively analyze these data, we obtain g, (7) by solving
the Laplace transform of the diffusion equation as previously discussed.
We take the source of diffusing intensity to be a distance z = z, inside
the illuminated face where we expect that z, ~ [*. We first consider the
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Fig. 4. Intensity autocorrelation functions vs time for transmission
through 2-mm thick cells with 0.497-pm-diameter polystyrene spheres and
¢ = 0.01. Smooth lines are fits to the data by Eqs. (15) and (16) with I* =
173 um for the point source and I = 175 um for the extended source.

case of uniform illumination of one side by an extended source. From
Egs. (12) and (15), we obtain

L+(4/3)* : z T T z T
() = YT {smh [,—"- f—o +2 % cosh [T"- ‘j—o]}
(r) =
(1 + é%) sinh [,% 91+ 51/ cosh [,% ;:—] (18a)
) (k9%
~ )
(1 + 5%) sinh [l—z‘; ;:—] + 54/ L cosh [,% e (18b)

where the second expression holds for 7 < 75. The characteristic time
scale in these expressions is o (I*/L)?.

For the second geometry, we consider light incident from a point
source on axis with the detector, and obtain

g1(7) / [A(s) sinh s + e~*(*==0/F)]ds (19a)
(L/1*)\/67 /70
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where

_ (es — 1)[ese™**0/X + (sinh s + s cosh s)e~*(1 ~=0/L)]
Als) = (sinh s + es cosh 5)2 — (es)? (19b)

and £ = 2/* /3L. For convenience, we take z, = (4/3)!*, but note that
the solutions are insensitive to the exact value used since, in general,
zy ~ I* and I*/L <« 1. This reflects the fact that the value chosen
for zo affects only the first few steps of a random walk which typically
consists of a great number of steps. Thus, the relative contribution of
the first few steps is small.

These expressions can be compared directly to the experimental
data. In Fig. 4, the solid lines through the data are fits to the appro-
priate equations above. The time constant 7, = (Dk2)™?! is set equal
to 3.73 msec where D was obtained from a QELS measurement in the
single scattering limit at ¢ = 1075, The diffusion coefficient D remains
independent of concentration for the particle concentrations used in
these measurements. For both cases, the data are well-described by
the predicted forms of g,(r) with {* the only fitting parameter. The
fit gives I* = 175 um for the extended source and {* = 173 um for the
point source. This excellent consistency for the fitted values of I* con-
firms that the somewhat different decay rates in Fig. 4 are due solely to
geometric effects. The values of {* compare well with Mie theory which
gives a value of I* = 195 um, about 10% higher than measured. This
small difference may be due to the approximate nature of the boundary
condition on the exit side. Indeed, a slightly smaller value for I* was
obtained in an earlier analysis of this data, which used different bound-
ary conditions, demonstrating the sensitivity of g;(r) to the boundary
conditions.

While the autocorrelation functions shown in Fig. 4 are clearly
not single exponentials, their curvature in the semi-logarithmic plot is
not large. This reflects the existence of a dominant characteristic path
length and time scale for these data, as expected. This also suggests
the suitability of analyzing the data by means of the first cumulant T';,
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or the logarithmic derivative at zero time delay. For Eq. (18), the first
cumulant is given by

_dlng, (r)

T . (L/1*)? +4(L/1*)+8/3
1T or

r=0 7o(1 + 4l* /3L)

(20)

For Eq. (19), the first cumulant must be evaluated numerically. Mea-
surements of y/T'; as a function sample thickness are shown in Fig. 5
for several volume fractions. The plots show the expected linear de-
pendence of y/T'; over a broad range of concentrations confirming the
diffusive nature of the transport of light. It is apparent that the data
do not extrapolate through the origin but that the z-intercepts are
a monotonically decreasing function of particle concentration and, to
within experimental uncertainty, consistent with Eq. (20). The different
slopes are due primarily to the concentration dependence of I*, which
is expected to scale inversely with particle density.

800
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200
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Fig. 5. Square root of the first cumulant r'; vs sample thickness L for 0.497-
pm-diameter spheres for different volume fractions ¢.
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4. BACKSCATTERING

Another interesting and important geometry is that of back-
scattering.*®%7 Here, the light is incident uniformly on one face of
a slab of thickness, L, and the scattered light is collected from the same
face, as illustrated at the top of Fig. 6. In contrast to transmission, in
backscattering there is no well-defined characteristic path length set by
the sample thickness. This can be seen from the time dependence of
the detected intensity of an incident delta function pulse, shown at the
bottom of Fig. 6. The intensity is peaked at early times, corresponding
to the fact that most of the light is scattered back after only a few
scattering events. However, there is still considerable light detected at
larger times, as reflected by the very slow decay of the intensity as ¢
increases. To emphasize this point, it is instructive to contrast the be-
havior of backscattered light with that of transmitted light. We do this
in Fig. 7, which shows the dispersion induced in delta function pulses
for transmission (dashed line) and backscattering (solid line), plotted
logarithmically. The transmission pulse is sharply peaked at the time
corresponding to the characteristic path length, and decays rapidly at
later times. By contrast, the backscattered pulse is peaked at very early
times, corresponding to the light immediately backscattered, but then
has a very long, power-law decay. In Fig. 7, we also show on the upper
axis the number of scattering events, n*, corresponding to the transit
time, t.

This power-law decay in the dispersion of a delta function pulse is
directly reflected in P(s) for the backscattering geometry. As a result,
the autocorrelation function no longer depends sensitively on I*, and, in
principle, it becomes possible to determine 7, without prior knowledge
of I*. In fact, since paths of all lengths contribute in backscattering,
the autocorrelation function consists of contributions from all orders of
multiple scattering. As a consequence, there is a much broader distri-
bution of time scales in the decay. The longer paths consist of a larger
number of scattering events and thus decay more rapidly, probing the
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Fig. 6. Backscattering of a short pulse of light from a multiply scattering
medium. Input beam is expanded and columated; light is detected near
the center of the area illuminated by the input pulse. (top) Experimental
geometry showing light paths which exit at a point directly opposite the input
pulse. Other paths are present, but not shown. (bottom) Time-dependent
output response to &(t) input pulse (L=1cm, I =100 ym, ¢ = 2 x 10°
cm/s, z = 20).

motion of individual particles over shorter length and time scales. By
contrast, the shorter paths consist of a smaller number of scattering
events thus decaying more slowly and probing the motion of individual
particles over longer length and time scales. This feature is particularly
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advantageous for exploring the dynamics of interacting systems, which
can have a broad distribution of relaxation rates associated with motion

over different lengths scales.
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Fig. 7. Comparison of I{t) « P(s) for backscattering (solid line) and trans-

mission (dashed line) geometries.

To derive a functional form for the autocorrelation function for
backscattered light, we consider a slab of thickness, L, and of infinite
extent, uniformly illuminated from one side (Fig. 6). While we would
like to maintain the simplicity and elegance of the Laplace transform ap-
proach used in the case of transmission, we must be extremely cautious
in using this for backscattering. In obtaining the Laplace transform
in Eq. (12), we have used a continuum approximation to change the
summation paths in Eq. (11) to an integral. However, since s = nl
and we must have at least one scattering event, we require n > 1,
thus, the lower bound on s must be ! rather than 0. Equivalently, for
isotropic scatterers, where [ = [*, the decay time for a path of length s is
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exp{—(2r/70)s/l]. Allowing s < [l leads to unphysically long decay ti ‘\ 
since 7y /4 represents the shortest decay time possible, correspondingl ‘f
light singly scattered through 180°. Similarly, for anisotropic scatters ,.
where [* > [, we require s > I* to obtain physically meaningful de ~‘.
times. However, in order to maintain the simplicity of the Lapl
transform, the lower bound on the integral must be zero. For transm
sion, this does not present a problem as the shortest possible paths &
s = L, so that n > 1. By contrast, for backscattering, short paths d
contribute and thus, in using the diffusion approximation, we must
sure that the contribution of the unphysically short paths is suppresseq

A simple way of achieving this is to solve the diffusion equatig
using an initial condition of a source at a fixed distance, 2, in from tk
illuminated face at 2 = 0. This ensures that there are no contributio
from paths shorter than z,. Physically we can regard this as the sours
of the diffusing intensity, which we expect to be peaked at 2y ~ I
Thus, for the initial condition we take U(r,t = 0) = §(z,y,2 — 2,
and for the boundary conditions again we use Eq. (17). The soluti

for this geometry is,

6.2 S [V (-] +2 \/‘;cosh{\/_“z(%—f-?)}. ’
( +2 f;)smh [,\/—] \/‘;cosh[,. fo]

For a sample of infinite thickness, Eq. (21) simplifies,
e (zo/1%)y/67 /10

Gi(r)=
1+ 3%

We note that the initial condition of a source at z, appears explicitly
the solution, reflecting the importance of the contribution of the sh
paths. In fact, we expect there to be a distribution in the position of
apparent source, zo. Thus we must integrate Eq. (22) over a distribuf
of sources, f(2,). While the exact form of f(2,) is unknown, we do ky
that f(zo) goes to zero as z, > I* and for zo <« I*. Furthermore,
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expect f(zp) to be peaked near z, ~ I*. Thus, to leading order in
V/7/70,9:(r) is given by Eq. (22), with 2, /I* replaced by (z,)/I*, the
average over the source distribution f(z). The first order correction
is [(22)/(20)? — 1]7 /7 which is small for a narrow distribution f(z).
Physically, we can think of (2,) as the average position of the source of
diffusing intensity, and we expect that the exact form of the distribution
f(20), and therefore (z,), will depend on the anisotropy of the scattering
as reflected by I* /1.

An autocorrelation function measured in backscattering is
shown in Fig. 8. The sample consisted of 0.412 um diameter spheres at a
volume fraction of ¢ = 0.05 in a 5 mm thick cuvette. It was illuminated
by a uniform beam, 1 cm in diameter; light from a 50 um diameter spot
near the center of the illuminated area was imaged onto the detector.
The scattering angle was ~ 175°, although we found virtually no depen-
dence of the results on scattering angle when it was varied ~ 20° from
that used here. This is expected for diffusing light. After subtracting
the baseline, the logarithm of the autocorrelation function, normalized
by the baseline is plotted as a function of the square root of time, in
units of 7,. We use 7o = 3.01 msec, as measured experimentally in the
single scattering limit, and consistent with the value calculated from
the Stokes-Einstein relation. The solid line is a fit to the functional
form given by Eq. (22), and is in reasonably good agreement with the
data. However, the theoretical form exhibits somewhat more curvature
than the data. In fact, to within the precision of experiment, the data
shown in Fig. 8 is linear over three decades of decay when plotted loga-
rithmically as a function of the square root of time. This suggests that
the data can be more simply described using

Gy(r) = e VO /e (23)

where v = (20)/1* + 2/3. This result was obtained previously using the
simpler, but less rigorous, boundary condition, U(z = 0) = 0 (Refs. 7,8).

The behavior of the autocorrelation function shown in Fig. 8 is
in fact quite general. Virtually all the autocorrelation functions that
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Fig. 8. Intensity autocorrelation function vs sqaure root of reduced time for
backscattering from a 5-mm thick cell with 0.412-um-diameter poly-
styrene spheres and ¢ = 0.05. The line through the data is a fit to the
theory in Eq. (22), and has a more rapid initial decay and more curvature
than the data.

we have measured in backscattering for freely diffusing particles exhibit
a similar behavior in that they decay exponentially in the square root
of time. Therefore, it is most convenient to use the very simple form
in Eq. (23) to describe their shape. The slope of the autocorrelation
function, when plotted in this fashion, is determined solely by 7, and
by ~. While we have derived this functional form using rather heuris-
tic arguments, similar results are also obtained using more rigorous
diagrammatic techniques.!®* However, it is again essential to properly
account for the contributions of the short paths. This can be done
by ensuring that the difference between initial and final wavevectors
is strictly 2ko, as required for backscattering, and by limiting the mo-
mentum transfer in any single scattering event to properly reflect the
form factor of the scatterers. By contrast, if this is not done, the con-
tributions of the short paths are over estimated in the diagrammatic
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approach, leading to a prediction® for the autocorrelation function that
describes the initial decay reasonably well, but fails at longer times by
predicting a power-law decay, in sharp disagreement with the data.
Using samples of known o, we find experimentally that 4 depends
on both polarization and on the anisotropy of the scattering, as char-
acterized by {* /l. The dependence of v on polarization is strongest for
isotropic scatterers, when I* /l — 1, as illustrated by the data in Fig. 9a.
These data are obtained from a ¢ = 0.02 sample of 0.091 pm diameter
spheres, for which I*/l =~ 1.1. The sample is illuminated by linearly
polarized light, and an analyzer is used to detect scattered light whose
polarization is either parallel or perpendicular to the incident light. The
autocorrelation function for the perpendicular polarization decays more
rapidly, because the analyzer discriminates against the low order paths
which retain a high degree of their incident polarization. This reflects
the contribution of multiple scattering paths for which the diffusion
approximation is more appropriate. The value measured is v = 2.5.
By contrast, the autocorrelation function for the parallel polarization
decays more slowly, because of the additional contribution of the low
order scattering paths which have a longer decay time. We note, how-
ever, that the form of the autocorrelation function is still the same,
remaining linear when plotted exponentially as a function of the square
root of time. Here, the value measured is ¥ = 1.6. By contrast, for
very anisotropic scatterers, the dependence of 4 on polarization is very
weak. This is illustrated in Fig. 9b, which shows data obtained using
a ¢ = 0.02 sample of 0.605 um diameter spheres, for which I* /I ~ 10.
The autocorrelation function for the perpendicular polarization again
decays faster, with v, = 2.1; for the parallel polarization, v = 2.0.
We summarize the dependence of 4 on {* /I for both polarizations
in Fig. 10. The data are obtained by varying the size of the spheres to
vary [* /1, since for the particle sizes used here this ratio is a monotonic
function of sphere diameter. In all cases, ¢ = 0.02. The data suggests
that, for each polarization, 4 asymptotically approaches a constant as
I* /1 becomes large. Physically, this reflects the diminishing contribu-
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Fig. 9. Intensity autocorrelation functions vs square root of reduced time for
backscattering for parallel and perpendicular polarizations. The upper and

lower curves are for 0.091-zm-diameter spheres, with v, = 1.6 and v, = 2.9;
the two middle curves are for 0.605-pm-diameter spheres, with 4, = 2.0 and
Y4 = 2.1.

tions of the short paths as the scattering becomnes more strongly peaked
in the forward direction. In this case, the diffusion approximation,
which is scalar in nature, should apply. Therefore, g,(r) becomes a
function of 7 /7, only, and thus, in this limit, v does not depend on I*/I.
In fact, an asymptotic value of v = 2.1 is predicted theoretically by
properly considering the contribution of the short paths to the autocor-
relation function at long times.!®!® Furthermore, the trends observed
in Fig. 10 for the dependence of 4 on both I* /I and polarization are
consistent with the predictions made using diagrammatic techniques.
The variation of 4 with particle size arises from the contribu-
tions of short paths, which are different for different polarizations and
values of I*/l. By contrast, the absolute decay of the unnormalized
autocorrelation function, G,(r), at short times is due solely to the con-
tributions of long paths which are well described within the diffusion



Dynamscal Correlations of Multiply Scattered Light

33
. A1
0 0
0 0]
~ of | X X
X
" X
I
by 4 7 10

Fig. 10. Experimental values of v vs I/ l and particle size for parallel (cross
and perpendicular polarizations (circles).

approximation. These contributions should be independent of polari
tion and !* /I due to the large number of scattering events. This lej
to an important relation between the value of v and the static intensi
G1(0) = (|E|*) = (I). To see this, we examine the short time expans
for G, (r) for a semi-infinite sample,

Gi(7) =G1(0)——7G1(0)\/§+... .

The characteristic square root of time dependence arises from the c¢
tributions of long paths and is independent of the boundary and init
conditions assumed. The rate of the absolute decay, G, (r)/8+/7 /10
also determined solely by the long paths. Thus, the coefficient, G (
should be a constant independent of polarization and I* /I. Hence, sit
G1(0) = (I) we expect
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This implies that both 4 and (I) depend on the contributions of low
order scattering and on the sample used. Physically, we expect (I) to
decrease for large I* /I or for perpendicular polarization, both of which
reduce the number of short paths contributing to the scattered intensity.
Similarly, we expect 7 to increase when the contributions of short paths
are reduced since it is the short paths which have the longest decay
times.

To test these ideas, we again consider the behavior of the exper-
imental autocorrelation function g,(r) = |g:1(r)|?>. Figure 11 shows a
plot of g;(7) vs \/% obtained using an extended light source with
parallel polarizer and analyzer.!! The measurements were taken using
four different diameters of polystyrene spheres: 0.102 pm, 0.305 um,
0.46 um, and 0.797 um. In each case, the sample size was lcm X lecm
X lem and the volume fraction of spheres was ¢ = 0.10. The autocor-
relation function, g,(r), appears to have the same form as a function
of 7 /7y for the three larger size spheres studied. Since the static aver-
age intensity (I) turns out to be the same for these samples, it is also
consistent with the prediction that the coefficient 4G, (0) is constant.
The autocorrelation function g;(r) decays slightly more slowly for the
smallest beads, again consistent with the slightly larger static intensity
observed in this case. Finally, the inset in Fig. 11 shows that the initial
decay of the autocorrelation function is linear in \/'7;(; , as expected
from Eq. (23).

5. ANALOGIES WITH STATIC MEASUREMENTS

The functional form of the temporal autocorrelation function de-
pends crucially on the distribution of paths explored by the diffusing
light. In backscattering, g, (r) is particularly sensitive to the contribu-
tions of short paths as evidenced by the dependence of 4 on polarization
and {* /l. Thus, measurements of g, (r) become a sensitive probe of the
nature of the transport of light when there is significant multiple scatter-
ing. Other optical properties of strongly scattering media also depend
on P(s): the angle (¢) dependence of the coherent enhancement of the
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backscattering cone and the absorption dependence of the incoherent
backscattered intensity. In fact, within the diffusion approximation, the
description of all three of these quantities depends on P(s) in exactly
the same way. The analogy that exists between these three quantities
dramatically illustrates the similarity of the underlying physics and the
utility of the diffusion approximation in describing a wide variety of mul-
tiple scattering processes. The analogy also has practical consequences:
it leads to a way of experimentally determining ~, and therefore also
7o, without recourse to any specific theory about the distribution of the
low order multiple scattering paths which are not rigorously described
within the diffusion approximation.
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Fig. 11. Intensity autocorrelation functions vsreduced time for backscattering
for polystyrene spheres of various diameters and ¢ = 0.10. The inset shows
that the initial decay is linear in the square root of time.

We have already considered the temporal autocorrelation function
in the previous section where we found that for r/r, < 1,

gig;=1—7\/§+..., (24)
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where the coefficient 4G (0) does not depend on the contributions of
short paths.

Next, we consider the coherent backscattering cone. As outlined
elsewhere in this volume, the average scattered intensity is higher in
the backward direction than at wide angles. This is because for each
scattering path there exists a time-reversed path of identical length
which contains the same fraction of the total intensity and has the
same phase shifts. Light emerging from both of these paths interferes
constructively in the backward direction. The angular dependence of
this coherent enhancement above the incoherent wide angle intensity
is controlled by the spatial separation of the endpoints of the path, p.
The enhancement for a given angle and a given path length s is simply
the Fourier transform of the probability distribution p(p, s)

afs,q0) = I /p(p,S)e“"°"'d2po< P(s)e~ %! o3

where qq is the scattering vector with respect to the backscattering an-
gle (6o = 0) and its magnitude is g = 4mrn/Asin(6y/2). This means
that the paths of length s, which have a mean square end-to-end dis-
tance of ~ v/sl*, contribute a gaussian of angular width A / Vsl* and of
amplitude P(s) to the total coherent backscattering enhancement a(go)
[albedo]. Thus, a(go) is obtained by integrating over these Gaussians,

o(g0) & / P(s)e= 30" /2 4 | (25)

Equation (25) has the same form as Eq. (12) when the identification
27/1o — (gl*)?/3 is made. Therefore, by analogy the angular variation
of a(go) at small go(gol* <« 1) is given by

alg) _ .

where the coefficient v is the same as in Eq. (24) for the same sample,
provided that single scattering is negligible.!* The square root singu-
larity of G;(r) with time maps into a linear singularity of a(g) with
angle.
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We can also compare G,(r) and a(go) with the dependence on
absorption of the incoherent intensity near backscattering. If the ab-
sorption in the scattering medium is characterized by an absorption
length, I, then the fraction P(s) of the intensity scattered on average
along a path of length s is attenuated by exp(—s/l,). The total scat-
tered intensity can then be written as an integral over the distribution
of path lengths,

ar(ls) /P(s)e"’/"ds . (27)

This form also maps into G,(7) and a(g) in Eqgs. (12) and (25) when
the identifications 27 /r — (ql*)?/3 — I*/l, are made. Therefore, the
variation of the normalized backscattered intensity with absorption for
weak absorption (I* <« [;) bceomes

a,(la) _1_’7 ﬁ

(o) = e (28)

Equations (24), (26), (28) are three equivalent relations for the initial
slope of the normalized temporal autocorrelation function, the normal-
ized angular dependence of the coherent backscattering cone, and the
normalized dependence of the incoherent scatteriﬁg intensity on absorp-
tion. These equations contain essentially three potentially unknown
parameters: 4,7, and I*. Thus in principle, an absolute measure of
a particle’s diffusion coefficient D can be obtained from r, by experi-
mentally determining g, (1), a(g0)/a(0), and a;(l;)/ s (o0) on the same
sample in the short time, small angle, and weak absorption regimes, re-
spectively. Physically, this correspondence reflects the fact that all these
processes probe the same long diffusion paths of the light. This analogy
demonstrates the simplicity and power of the diffusion approximation
in treating the consequences of multiple scattering.

We demonstrate this correspondence in Fig. 12. We compare the
temporal decay of g;(7) plotted as a function of \/7 /7, with the varia-
tion of the static incoherent intensity (I) as a function of added absorb-
ing dye for a ¢ = 0.10 suspension of 0.46 um diameter spheres.!! We
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find good agreement with Egs. (24) and (28). Even beyond the linear
regime the two quantities show a very similar functional dependence
when plotted as a function of the appropriate variables, \/51'_/1'; , and
\/1* /1. This demonstrates the validity of Eq. 12. In fact, the value of
7o used in order to achieve good matching between the two data set is
10% larger than the free particle diffusion time in backscattering. This
could be due to a slight reduction of D which is expected because of
the hydrodynamic interactions between particles.
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Fig. 12. Comparison of the temporal autocorrelation function vs /27 /7, with
the incoherent intensity vs \/i/l. for backscattering from 0.46-um-diameter
spheres with ¢ = 0.10.

6. APPLICATIONS

In the previous sections we limited our theoretical treatment of the
autocorrelation function of multiply scattered light to non-interacting
monodisperse particles whose dynamics were determined solely from
their Brownian motion. In this section we generalize our treatment to
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investigate the behavior of the correlation function for other situations,
including polydispersity in the particle size, absorption of light, and
convective motion of the suspension. We also discuss the application of
DWS to suspensions where interparticle interactions become important.

6.1. Particle Sizing

One of the most useful applications of DWS is for sizing
particles.*® In principle, we can combine DWS with measurements of
the back-scattering cone or dependence on absorption to uniquely mea-
sure 7 for an unknown sample. In practice, it is more straightforward
to exploit the features of DWS alone for particle sizing. To demon-
strate the utility of DWS, we measured autocorrelation functions in
backscattering with perpendicular polarization for monodisperse sus-
pensions of polystyrene spheres of different diameters. In Fig. 13, we
have plotted log g, () vs \/;/To for six different samples with ¢ = 0.05
and with sphere diameters, d, ranging from 0.091 um to 0.605 um. For
d > 0.3um, the scaled autocorrelation functions all fall on nearly the
same curve, suggesting that the parameter v, approaches a single value
for large particle sizes. This is consistent with the data in Fig. 9 which
show v, saturating at a value of approximately 2.1 for large [* /I. Thus,
in the limit of large particle diameters, DWS can be used to unambigu-
ously determine 7, = (DkZ2)~'. If the relationship between D and d
is known, as it is for small ¢, DWS can be used to determine particle
diameter to better than 10%.

For d < 0.3, 4, is no longer independent of particle size but
steadily increases with decreasing particle size. Since 4, and 7, enter
the expression for the autocorrelation function multiplicatively, 7, can-
not be obtained in a single measurement without prior knowledge of v, .
However the data shown in Fig. 9 suggest that v, /v, is a monotonic
function of {* /I. Therefore, it is possible to unambiguously determine 7,
using DWS for a given sample by measuring the autocorrelation func-
tions for the different polarizations. In this case, the ratio.of the decay
rates gives the value of I* /! allowing the absolute values of v, and M
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to be determined. Once v, and < are known, 7, can be obtained from
the rate of decay of the autocorrelation function.

1

0.1

0.01

92 (T)

0.001

0.0001

Fig. 13. Intensity autocorrelation functions vs square root time for back-
scattering for polystyrene spheres for six different samples with ¢ = 0.05.
From the lower left to the upper right corners, the curves correspond to data
from spheres with the following diameters: 0.091 xm, 0.198 ym, 0.305 pm,
0.497 ym, 0.412 pm, 0.605 pm.

However, care must be exercised in using this scheme since the the-
ory accounts only for the variations of 4 arising from the single particle
form factor, F(q), and ignores the effects of longer range correlations
as measured by the static structure factor, S(q). As outlined below,
estimates of the influence of S(q) suggest that these effects may be sig-
nificant at particle volume fractions as low as 10%. Fortunately, there
are alternative methods for determining 4 which do not depend on spe-
cific assumptions made about the details of the scattering properties of
the medium. One of these methods depends on the analogy between
DWS, coherent backscattering, and incoherent absorption discussed in
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the previous section. However, this method requires that three inde-
pendent measurements be made. An alternative, which is significantly
simpler to implement, is to exploit the result that 4(I) should be a
constant, independent of particle size. Thus, the diffusion coefficient D
could be measured by comparing the decay of g,(7) to that of a cali-
bration sample made up of polystyrene spheres with a known D. The
ratio of the slope d1lng;(7)/d1 = v1/6/7, times the ratio of the static
intensities would provide the inverse ratio of /7, for the two different
systems. In this way, the dynamics of concentrated suspensions could
be probed and particle size could be determined provided, once again,
that the relationship between D and d is known.

6.2. Polydispersity

We now consider the effects of polydispersity on the correlation
function. In this case, the scattering medium possesses a distribution
of species with different optical properties and different diffusion coef-
ficients. In the case of conventional quasi-elastic light scattering, this
leads to a non-exponential relaxation of the autocorrelation function. A
considerable amount of research has gone into analysing the QELS data,
to invert the shape of the non-exponential autocorrelation function and
obtain information about the distribution of scattering species.?° In
the case of strong multiple scattering, the decay of the autocorrelation
function is already non-exponential and geometry dependent. Should
we then expect additional changes in the decay of the autocorrelation
function due to the effects of polydispersity?

In the previous sections we have seen that the correlation function
could be calculated if we knew the temporal dependence of the dephas-
ing of a statistical path of n steps. The dephasing occurs by a random
walk of phase shifts caused by the motion of the individual particles
along the scattering path. For a polydisperse system the scattering
from different size particles leads to phase shifts of different average
magnitude resulting from the dependence of (¢?) and D on the particle
diameter. This results in a random walk with different step sizes: In
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the continuum limit, or diffusion approximation, the statistics of the
random walks reduce to simple Gaussian functions. Thus, if the step
size of a random walk varies for each step, then for large n, the statistics
still remain the same as for a walk with a single average step size. This
is the result of the central limit theorem. Thus, the time dependence of
the autocorrelation function should be the same for a polydisperse sys-
tem as for a monodisperse system. In contrast to QELS, there should
be no additional information about polydispersity in these measure-
ments. We will only measure average properties. The question which
remains is how to calculate the appropriate average diffusion constant
for a polydisperse sample.

Intuitively the answer is clear: We would expect the average dif-
fusion constant to be weighted by the relative concentration of a species
and by its scattering strength as expressed by its scattering cross sec-
tion. As we detail below the intuitive answer is correct. We limit our
discussion here to the case of non-interacting particles. For simplicity
and illustration we first consider the case of a bimodal distribution, a
density p; of particles with scattering cross section ¢, and diffusion con-
stant D;, where 7 = a,b. We then replace Eq. (2) for the total phase
shift for an nth order scattering process by ‘

SECERCUE) SENVENCE RAPENCCD

where n, + n, = n. Since the average scattering wavevectors and rms
displacements differ for the two species it is convenient to sum sepa-
rately over the phase shifts for each species. The ensemble averages are
calculated as in the monodisperse case but now keeping track of the
species. Equation (5) becomes

"™ (+) = I, P(n) <e—q’<Ar:i(r)>/s>"“ <e—q’<Ar:,. (r))/s>""
q q9

Performing the individual averages as before, we have

G(I")(T) — IOP(n)e—nuzk(’,(14/1;)Dar—n.,zkg(l.,/zg)b.,r , (30)
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where we have left the characteristic decay times 7y, and 7y, in terms of
the diffusion coefficients for each species and ko. Thus, 1o; = (D;k2)~1.

We must now determine the average number of scattering
events from particles a and b in a path of total length s. The relative
probabilities of scattering by a or b are proportional to their number
densities and total scattering cross sections or inversely proportional to
their individual mean free paths

na/nb = (paaa/pbab) = Ib/la
or n,l, = nyl,. Substituting this into Eq. (30) gives
A (1) = ngl 2k (D, /I + Dy /J13)r

where A¢(")(7) is the exponent of Eq. (30). The total path length is
given by n steps with the actual mean free path of the system !’ which
includes scattering from both species.

11 = paos + ppos = 1/l + 1/1,

—_ (-
s=nl' =n,l,

since n = n, + ny = na(1 + 1, /1,). For use below we also note:

1/l = (11 +1/8) .

The final result for the time dependent dephasing from the two species
is therefore:

A" (1) = s2k5 (Do /U + Do/ly)r

which is simply proportional to s and 7 as expected, and has the same
form as the previously derived expression for a single species. Thus,
the time dependence of the correlation functions will not change from
the results for a single species provided we substitute the appropriate
averages for {* and r,. Writing the phase shift as:

A (1) = (s/12g)(7/7en)
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and generalizing to the case of many different species we have directly:

Ylte = SO1/1; (31a)

J

1/Te = k3 Degt (31b)
Deq = (3 Ds/5)/(31/1) - (310)

The effective diffusion constant is the weighted average of the diffusion
coefficients. Since 1/I} = p;0;, the weighting factor is the number den-
sity times the cross section for transport scattering or alternatively the
inverse mean free path. The expressions for 7.g and Iz in Eq. (31) can
be directly substituted for 7o and {* in the correlation functions pre-
viously described. To illustrate this behavior, we measured the auto-
correlation function in both transmission and backscattering from a se-
ries of binary mixtures of 0.198 um and 0.605 um diameter polystyrene
spheres. In all cases, the functional form of the data obtained from mix-
tures is identical to that obtained from a single species. As an example,
in Fig. 14, we show the autocorrelation function obtained in backscat-
tering from a mixture of ¢ = 0.02 of 0.198 um spheres and ¢ = 0.02 of
0.605 pm spheres. The expected exponential decay in the square root
of time is apparent. We also calculate 1/I} = p;0:(1 — cos8;) for each
species using Mie theory, and D; from the Stokes-Einstein relation. The
solid line through the data is the calculated decay using the calculated
values of D.g and {7z and assuming that v = 2.1. The agreement is ex-
cellent. Similar agreement is obtained for mixtures with different ratios,
These results are summarized in Fig. 15 where we compare the value of
T.q determined experimentally from backscattering measurements with
that calculated theoretically from D.g and IJg.

We conclude by again emphasizing that, unlike QELS, DWS can-
not yield independent information about polydispersity. Instead, only
average quantities can be determined. However, we can calculate the
average quantities if the distribution is known which, in principle, can
allow the effects of different possible distributions to be tested. One
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Fig. 14. Intensity autocorrelation functions vs square root reduced time for
backscattering from a mixture with 0.198-um-diameter spheres at ¢, = 0.02
and 0.605-um-diameter spheres at ¢, = 0.02. The solid line through the data
is determined without any fitting parameters using Eq. (31) as discussed in
the text.

important effect that has not as yet been determined is the dependence
of 4 on polydispersity.

6.3. Porous Media

One application of the calculation for a polydisperse system is the
limit where part of the sample consists of strong scatterers which are
static while another component scatters and is diffusing. Such would
be the case for particles diffusing in a porous medium. The result is
straightforward, for the static components we simply set D; = 0 in
Eq. (31) and use the correlation functions previously described. For
example if we have a porous structure with a transport mean free path
[* and we introduce a colloid which has the same [* and a diffusion
constant D (in the presence of the pores), then the correlation func-
tion would decay as for a homogeneous medium with effective diffusion
constant D/ 2. The fact that the analysis of the data is so straightfor-
ward if we know the transport mean free paths of the porous structure
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Fig. 15. Effective decay time 7.g vs volume fraction ¢ for mixtures of 0.198-
pm-diameter spheres and 0.605-um-diameter spheres.

and the particles separately, implies that this should be a very useful
way of seeing how the particle diffusion is affected by the presence of a
confining geometry. To illustrate these ideas, in Fig. 16 we show an au-
tocorrelation function obtained in backscattering from a glass frit with
4-8 pm diameter pores which were saturated with a ¢ = 0.01 suspen-
sion of 0.497 um diameter polystyrene spheres. The autocorrelation
function exhibits the exponential decay in the square root of time. It
is important to note that, in this case, the rigid glass frit provides a
reference signal so that the autocorrelation function was measured in
the heterodyne mode; hence, g, (r) is obtained.

There is a complication which may arise in studying porous me-
dia. We have implicitly assumed in the derivation of Eq. (31) that the
geometry and density of particles of each species is such that there is a
statistical sampling of each species in each path, that is, if we double
the path length there are twice as many particles of each species con-
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Fig. 16. Heterodyne autocorrelation function vs square root time for backscat-
tering from a glass frit with 4-8 pm diameter pores saturated with a ¢ = 0.01
suspension of 0.497-um-diameter polystyrene spheres.

tributing to the scattering. If on the other hand we have a very dilute
concentration of moving particles in a porous medium, such that all
paths sampled by the correlation function involve at most one scatter-
ing from a mobile particle, then the description given above is invalid.
Instead the correlation function will be like that for the single scatter-
ing limit, i.e. like that for QELS. The effect of the scattering from the
porous medium will simply be to randomize the direction of incident
and scattered wavevectors. Thus the correlation function will have the
form of a QELS relaxation averaged over scattering angles and weighted
by the form factor for scattering from a single sphere. For spheres much
smaller than the wavelength of light, the scattering from a single sphere
is isotropic and the average is easily performed:

91(r) = T2 (1= &7/ (32)
For 7 < 19, g1(r) ~ exp(—7/27) and for r > 7, g,(r) ~ 77'. Fig-
ure 17 shows an autocorrelation function obtained from a porous' glass
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sample with ~ 5um-diameter pores which were filled with an aqueous
suspension of mobile 0.091um-diameter polyballs at ¢ = 0.01. The data
were found to be in excellent agreement with Eq. (32) where the value
of o = (Dk3)~1! is given by the free particle diffusion coefficient for the
polyballs. This is consistent with the expectation that diffusion should
be unimpeded when the pore size is much larger than the mean particle
diameter.

6.4. Absorption

In any physical system there will always be absorption of light,
either by the scatterers themselves or by the solvent in which they are
suspended. Furthermore, the effects of absorption will be enhanced
in the multiple scattering limit because the path lengths of the light
and the number of scattering events are greatly increased. However,
the consequences of absorption for the autocorrelation function can be
readily determined within our approach. For any scattering geometry,
P(s) is the fraction of the scattered intensity associated with paths of
length s = nl. With absorption, the intensity of light travelling a path
of length s is attenuated exponentially by a factor exp(—s/l,), where
[, is the absorption length. Thus, we write P'(s) = P(s)exp(—s/l,),
where P(s) is determined solely by geometry, as before. Then Eq. (12)
has the form: )

Gi(r) = Io/P(s)e"/'«—(2f/ro)s/t‘ds .

Since both terms in the exponent are linear in s, the effect of the ab-
sorption is mathematically the same as shifting the time scale. Thus all
of our previous analysis for different geometries is directly applicable if
we simply make the substitution:

/1o = U J2l, +7/70 .

In this case, the form of the autocorrelation function for backscattering

91(r) = exp (—7\/ ?—: + ?;i) : (33)

becomes
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Fig. 17. Heterodyne autocorrelation function vs time for scattering from a
porous glass sample filled with an aqueous suspension of mobile 0.091-um-
diameter polystyrene spheres at ¢ ~ 0.01. Light is multiply scattered by the
immobile porous glass but only singly scattered from the mobile polystyrene
spheres. (2) Straight line shows first cumulant approximation; (b) r~! decay
at long times.

We illustrate this behavior in Fig. 18, where we show the autocorrelation
function obtained in backscattering from 0.497 um diameter polystyrene
spheres with ¢ = 0.01. The lower curves were obtained upon addition




360 D. J. Pine et al.

of varying amounts of methyl red, which absorbs the 488 nm laser light
used. The absorption lengths are I, = 4.87 mm for the upper curve
and I, = 2.53 mm for the lower curve. Physically, the effect of the
absorption is to reduce the contribution of the longer paths to the decay
of the autocorrelation function. These paths would otherwise contribute
a rapid, initial decay of the correlation function. This effect is clearly
evident in Fig. 18 by the rounding of the correlation function at early
times.

A comparison of the prediction of Eq. (33) with the data is shown
by the solid line in Fig. 18. The theoretical curves do not have any free
parameters other than the overall normalization, which is determined
by the collection optics, as reflected in f(A). The value of v used is
determined from a measurement without the dye, and the values of {,
for each sample are determined from independent measurements of the
transmitted intensity through the sample. The agreement between the
theoretical prediction and the data is excellent, confirming the validity
of our expression in Eq. (33).

The reduction in the contribution of long paths will also have pro-
found effects in transmission. It will dramatically alter the functional
dependence of T'; on L, with I'; becoming linearly depéndent on L
rather than L2. This reflects the fact that only the shortest paths can
contribute to G,(r) in transmission with absorption, since the longer
paths are attenuated. Thus the typical path contribution to the decay
will have a length of L rather than (L/I*)21*.

6.5. Sheared Sﬁspensions

The loss of correlations in the scattered light can be caused by
almost any motion of the scattering particles, not just the diffusive
motion that we have considered to this point. Convective motion can
also cause a loss of correlations. However, uniform motion will not lead
to dephasing of multiply scattered light, just as it will not contribute for
singly scattered light. For uniform motion, the speckle pattern simply
translates with the object. Thus the correlation function will decay only
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Fig. 18. Intensity autocorrelation functions vs square root time for back-
scattering from samples with absorbing dye in aqueous solution.

as new parts of the sample are introduced into the incident beam or the
viewing aperture. By contrast, for relative motion of the particles, the
path lengths change and dephasing occurs. The essential difference
for convective motion by comparison to diffusive motion is the time
dependence of the relative mean square displacement. For convection
we have (Ar?(r)) o« 72 whereas for diffusion we have (Ar?(r)) « 7.
Therefore, we expect the \/7-dependence found up to now to be replaced
by a r-dependence.

The simplest relative motion to treat is that for simple shear
such as planar Couette flow.?! Let us take a velocity profile given by
v = T'z@,, where ' = dv/dz. The relative displacement of a particle
consists of a Brownian diffusive term, Ar? (), and a convective shear
term, Ar; (r). Then, if the Brownian motion is not affected by the
laminar shear flow, the total change in phase along a given path of n
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scatterers is:

A¢™) (r) = Z Agi(r) = Zq, cArP (r) + qi - Ar (7)
=1
where q; = k; — k;—;. Since the phase is changed only by relative
motion of the particles, it is convenient to rewrite the contribution of
convection to Ag(")(7) as

q - ArS (1) =k - [Ar] (1) — A (r)] = Trko A (& - 8, )(R: - €,)

where A; = |Ar{, (0) — Ar] (0)| is the distance between successive scat-
tering events, K; is a unit vector in the direction of the scattered light,
and €, and €, are unit vectors in the z and z directions, respectively.
This can be rewritten in terms of the polar and azimuthal angles, 6;

and ¢;, shown in Fig. 19:
q; - Ar; (1) = TrkoA; cos 8; sin b; cos ¢; .

For small particles which scatter light isotropically, the successive
A¢;(r) are uncorrelated and the average of the product in Eq. (3) is
once again the product of the average of n independent terms. Since
we have assumed that Ar?(7) and ArJ(r) represent two independent
motions, the average over them can be performed independently. We
have previously considered the Brownian motion. For the contribution
from shear, we perform a moment expansion. Since the leading non-
vanishing term in such an expansion is the second moment, we average
sin’? 260 cos? ¢ over the unit sphere and obtain

<H e-aq-r.«<r)> e L
t=1

where 77} = Dlko//30 and | = (A) is the scattering mean free path.
The total autocorrelation function is once again obtained by summing
over all paths with s = nl

Gi(r)=1I / P(s)e'z[f/fo+(f/f.)’]a/lds .
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Fig. 19. Scattering geometry for calculation of the autocorrelation functions
for shear flow.

For larger particles which scatter light anisotropically, the same
results are obtained provided [ is replaced by [* everywhere.?! Thus, in

general

77} = Tl*ko/V/30 . (34)

The form of our results are identical to those previously obtained for
diffusion in the absence of shear provided we make the substitution

/10 = [r/70 + (r/7)] - (35)

Thus, we can simply adapt our previous results for G;(7) in transmis-
sion and backscattering to the case of shear.

In Fig. 20, we show data obtained in backscattering and trans-
mission for a ¢ = 0.02 suspension of 0.415-um-diameter polystyrene
spheres subject to Poiseuille flow through a 5-cm-long rectangular glass
cell. The transverse dimensions of the flow cell were Imm x 12mm with
light incident on the 12-mm face. Velocity gradients were probed along
the 1mm dimension in both scattering geometries. The solid curves
through the data in Fig. 20 are obtained without any fitting parame-
ters. The shear rate I' was calculated from measurements of the flow
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rate and taken to be the rms average over the 1mm thickness of the
cell. The other parameters, «,!*, and 1y, were obtained from measure-
ments without flow. The agreement between theory and experiment is
excellent.
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Fig. 20. Intensity autocorrelation functions for backscattering (top) and
transmission (bottom) from a ¢ = 0.02 suspension of 0.415-ym-diameter

polystyrene spheres subject to Poiseuille flow.

6.6. Interacting Particles

In the preceding discussion, we have implicitly assumed that the
particles which scatter light are completely uncorrelated. Thus, we
were able to separately average over the particle positions and the scat-
tering wavevector. However, this is strictly true only in the limit of
a dilute, non-interacting suspension of particles. More generally, both
the positions and the velocities of the particles are correlated due to
their interactions. These effects are particularly important in the dense
suspensions for which DWS is ideally suited. The most important inter-
actions are: (a) hard-core repulsion, which is short-range and important
at high volume fractions, (b) hydrodynamic interactions, which are long
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rate and taken to be the rms average over the 1mm thickness of the
cell. The other parameters, v,!*, and 7y, were obtained from measure-
ments without flow. The agreement between theory and experiment is
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Fig. 20. Intensity autocorrelation functions for backscattering (top) and
transmission (bottom) from a ¢ = 0.02 suspension of 0.415-pm-diameter
polystyrene spheres subject to Poiseuille flow.

6.6. Interacting Particles

In the preceding discussion, we have implicitly assumed that the
particles which scatter light are completely uncorrelated. Thus, we
were able to separately average over the particle positions and the scat-
tering wavevector. However, this is strictly true only in the limit of
a dilute, non-interacting suspension of particles. More generally, both
the positions and the velocities of the particles are correlated due to
their interactions. These effects are particularly important in the dense
suspensions for which DWS is ideally suited. The most important inter-
actions are: (a) hard-core repulsion, which is short-range and important
at high volume fractions, (b) hydrodynamic interactions, which are long
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range but generally become important as the volume fraction increases,
and (c) Coulomb repulsion, which can be important even at low volume
fractions provided the counterions in solution do not screen the inter-
actions too severely.2? To fully exploit the potential of DWS, we must
consider the consequences of correlations between the particles on the
measured autocorrelation functions.

To appreciate the problems of treating interacting systems, it is
useful to recall the limiting case of single scattering. Quasielastic light
scattering from interacting systems measures the dynamic structure
factor, S(q,7), defined as,

E(0)E*(r N i a(re(0)—r (v
{ ((;?)(q)( )>:NS(q,r)=<Ze'q'["() i )1>,

ij=1
where the sum is over the N scatterers, q is the scattering wavevector,
F(q) is the form factor of the scatterers and () denotes the ensem-
ble average. The dynamic structure factor is related to the Fourier
transform of the pair correlation function of scatterers and depends
on the interactions.?? For independent scatterers undergoing Brownian
motion, S(g,0) = 1 and S(g,7) = exp(—Dq*7); interactions introduce
correlations between particle positions and velocities and S(g,7) no
longer decays exponentially.

For short times, S(g,7) can be expressed in terms of S(¢,0) and
the diffusion coefficient, Dy = kg T /¢, since the particles have moved a
distance small compared to the average separation. Here, ¢ is the parti-
cle friction coefficient corrected for hydrodynamic interactions. Hence,
a particle’s motion is not yet affected by interaction with its neigh-
bors and the initial decay of S(g,7) is determined by the free particle
motion.?2 Thus, we have,

S(q,7) = 5(g,0) - ¢*(r*(r))/6
or, for Brownian motion,

S(g,7) = S(q,0) — D,¢’r = §(q,0)e~ P+ /5@




366 D. J. Pine et al.

which amounts to considering the effects of correlations only on the
average positions of the scatterers, and not on their velocities. Thus,
the collective diffusion coefficient is

D.(q) = D./S(q) , (36)

where S(g) = S(g,0) is the static structure factor.

Considering now the multiple scattering regime, proper incorpo-
ration of the correlations requires that the basic expression for the scat-
tering from particles in the medium be reformulated. Rather than con-
sidering the scattering from the individual particles as we have done, we
must consider the scattering from the density fluctuations of the corre-
lated particles which are described by S(gq,7). In general, the range of
correlations, £, is smaller than the scattering mean free path, so that
the multiple scattering is from an ensemble of independent cells of size &,
which are described by the local structure factor, S(gq,7) (Refs. 11,18).
One effect of these correlations will be to modify I* as can be seen di-
rectly from its definition, Eq. (9). To include the effects of interactions,
we must replace F(g) by the full scattering function, S(q) F(g), giving

I _ 28(S()F(2)) | &
L (PS(gF ()
With these modifications, we can adapt our former derivation for
the autocorrelation function to the case of interacting particles. The
time dependence of the average correlation function for a given path

with n cells is . .
<H S(qi’ T))/(H S(q"’O» .

The normalization insures that this expression goes to 1 as r — 0,
so that it contains only the time dependence of the autocorrelation
function, as modified by the interactions. This allows us to again use
the diffusion approximation to determine the intensity of nth order

(IT=, S(g,7))
(H?=1 S(g:,0))’

paths,
G{"(r) = LP(n)
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where () is the average over ¢ weighted by the form factor F(q) and
P(n) is the fraction of intensity in nth order paths. Within the diffusion
approximation, P(n) = P(s/l*) = P(nl/l*), with both [ and I* modified
by the static structure factor, S(g). For long paths, the successive ¢;
are uncorrelated, and the sum over the paths samples all possible ¢;, so
that we can replace the average of the product by the product of the
average,

= 15y @I
G = hP) 5 o)

For short times, (S(g,7))/(S(g,0)) ~ 1, and we express Gin)(r) as

(") (+) I, P(n) exp [—?éf} (1 - E—ﬁ%&%)] :

where we make explicit the fact that ni/l* is the relevant quantity in
the diffusion approximation, since s = nl. Comparing this equation to
Eq. (8), we find, as shown by MacKintosh and John,'® it is possible to
make the substitution,

2L (- )
o | (S(g,0))
in all the expressions for the autocorrelation function G, () to correctly
account for particle correlations.
Let us now apply this result to the case considered above where
D.(q) = D,/S(q), or S(q,7) = S(q,0) — D,¢*r. Using Eq. (37), we find
that the substitution gives!!

with
75 _ (4*S(q))
To (¢*)

Thus, interactions do not modify the functional form of G, (r) for
short times, and in particular, the square root singularity in backscat-
tering is preserved. Only the time scale of the decay is modified ac-
cording to the above equation. We can evaluate its modification for
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hard core interactions between the scatterers, which are probably dom-
inant for the polystyrene latex suspensions discussed above, where the
Coloumb interactions are effectively screened. In this case, the static
structure factor is known.?® For a suspension with ¢ = 0.10, S(g) in-
creases from 0.45 at ¢ = O to 1 at ¢ ~ /R, where R is the particle
radius. We then have to consider the average of S(g), weighted by
¢*F(g). For most of the scatterers we have used, this average em-
phasizes only the high ¢ region of S(g), where S(g) ~ 1, because the
diameter is comparable to the wavelength. Thus, the effect of the spa-
tial correlations, which are reflected by the behavior at low ¢, will tend
to be averaged out. Then we expect the time scale of the decay to be
only slightly modified with respect to the non-interacting case. This
probably explains why the data of Fig. 10, although obtained with sus-
pensions of ¢ = 0.1, fall on the same curve when the time scale is scaled
by the free particle diffusion time, 7.

By contrast, the long time behavior of G1(7) can be dramatically
affected by the interactions. To illustrate this, we consider the autocor-
relation functions obtained from a colloidal crystal. This is achieved by
reducing the concentration of counterions in a suspension of polystyrene
latex to the point where the Coulombic repulsion between the particles
is sufficiently long range that the balls crystallize. In Fig. 21, we con-
trast the autocorrelation functions measured in backscattering from a
non-interacting colloidal suspension and a colloidal crystal. We again
use a logarithmic plot of g, (7) as a function of the square root of delay
time. Both samples were comprised of 0.215 pm diameter polystyrene
spheres at the same volume fraction, ¢ = 0.10. The only difference
between the samples is the range of the screened Coulomb interactions,
which 1s experimentally controlled by the concentration of counterions
which have been reduced in one sample, causing it to crystallize. How-
ever, the autocorrelation functions are markedly different. The auto-
correlation function of the colloidal liquid decreases exponentially with
the square root of delay time, as expected. By contrast, g,(r) for the
colloidal crystal exhibits an initial rapid decay at the very early times,
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but then saturates, and does not decay to the baseline even at long
time scales. To ensure that a correct measure of the baseline is ob-
tained for these samples, data were taken at several different positions
on the sample and the separate results were averaged.?*

1
0.5+
5 crystal
[q¥]
O 0.2¢r
0.1¢r
liquid
0'050 0.01 0.02 0.03

JT (sect/?)

Fig. 21. Intensity autocorrelation functions from a weakly-interacting colloid
(liquid) and from a strongly interacting colloid (crystal). Both suspensions
consist of 0.215-um-diameter spheres with ¢ = 0.10.

This behavior is consistent with our expectations for the average
displacement of the particles in a colloidal crystal. At early times they
will move relatively freely, with the same diffusion coefficient as for
the non-interacting particles. However, as their mean displacement
approaches some fraction of the interparticle separation, they will feel
the Coulombic repulsion of their neighbors and will be unable to move
further. This is reflected in a decrease in their diffusion coefficient as
time increases. The backscattering autocorrelation function reflects this
directly. It probes a wide range of path lengths, and consequently a wide
range of decay times. At early times, the very rapid decay reflects the
contribution of the long paths, which consist of many scattering events,
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so that each ball need move only a small amount. This occurs very
rapidly, since the particles are diffusing relatively quickly. By contrast,
at later times, the slow decay reflects the contribution of the very short
paths, which consist of a small number of scattering events, so that each
ball must move a greater distance to cause the decay. This occurs on a
much longer time scale due to the repulsive interactions.

These results illustrate the potential power of DWS in studying
systems with interactions between the particles. There are clearly many
other very interesting interacting systems that can be studied by means
of DWS. However, caution must be exercised in the interpretation of
the results in determining the exact consequences of the correlations of
both the positions and motions of the particles. Indeed, considerable
work remains to be done to fully determine the extent to which the
relatively simple interpretations used here are valid.

7. CONCLUSIONS

In this chapter, we have presented a discussion of the temporal
correlations of multiply scattered light. A phenomenological deriva-
tion of the autocorrelation functions of the scattered intensity is used
to obtain expressions for several experimentally important geometries.
This derivation specifically exploits the diffusion approximation for the
transport of light in a multiple scattering medium. The geometries
considered are transmission through a slab and backscattering from a
slab. The expressions obtained are compared to experimental data and
excellent agreement is found.

The temporal autocorrelation functions directly reflect the motion
of the scatterers in the medium. By using our expressions, we are able
to relate the temporal fluctuations to this motion and thereby obtain
useful information about the dynamics of the scattering medium. This
provides a new method for studying the dynamics of dense suspensions,
which we have called Diffusing Wave Spectroscopy. We have demon-
strated the utility of DWS by applying it to measure the particle size
in concentrated suspensions, as well as to study the dynamics of par-
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ticles in porous media and under shear. We have also considered the
consequences of particle interactions, and the resulting correlations in
the particle positions and velocities, on the measured autocorrelation
functions.

Finally, we have shown that the temporal autocorrelation func-
tions probe the same combination of diffusing light paths as does the
enhancement of the static backscattering. This allows us to draw an
elegant analogy between these measurements, and thereby use the mea-
sured autocorrelation functions as a sensitive probe of the physics of the
multiple scattering of light.
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